High performance concrete, prediction of its resistance to compression through artificial neuronal networks

Descripción del Articulo

The building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the ba...

Descripción completa

Detalles Bibliográficos
Autores: Acuña P., Luis, Espinoza H., Pedro C., Moromi N., Isabel, Torre C., Ana V., García F., Francisco
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/125
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/125
Nivel de acceso:acceso abierto
Materia:Red Neuronal Artificial
probeta
compresión axial
aditivos
Artificial Neural Network
test tube
axial compression
additives
id REVUNI_d2a02afcc6c22c05d054e8646aad1cd9
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/125
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
spelling High performance concrete, prediction of its resistance to compression through artificial neuronal networksConcreto de alto rendimiento, predicción de su resistencia a la compresión mediante redes neuronales artificialesAcuña P., LuisEspinoza H., Pedro C.Moromi N., IsabelTorre C., Ana V.García F., FranciscoRed Neuronal Artificialprobetacompresión axialaditivosArtificial Neural Networktest tubeaxial compressionadditivesThe building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the basic components such as water, Cement, fine and coarse aggregates, contain other cementing additives, such as microsílices. The problem is to get a technological resource that helps predict the resistance of CAR from its manufacturing data, but this is impossible. However, we have artificial neural networks that fulfill this role, which after being transformed into true mathematical functions that approximate the expected values ??of the resistance of concrete specimens. The approximation level is estimated by the correlation between the response and the expected value of the network. It is then very useful to have a neural network that simulates numerically the resistance of the concrete, even before its manufacture. In this investigation, several artificial neural networks have been obtained that predict the resistance to compression of the CAR with correlations that vary between 0.86 and 0.91.  En las edificaciones de las viviendas modernas el concreto es un elemento fundamental que interviene. De otro lado en las construcciones de puentes, diques, túneles, esto es en la construcción de estructuras no estándares de la ingeniería civil, el concreto que se utiliza es el de alto rendimiento (CAR) que aparte de los componentes básicos como el agua, cemento, agregados finos y gruesos, contienen otros aditivos cementantes, como las microsílices. El problema es conseguir un recurso tecnológico que ayude a pronosticar la resistencia de CAR a partir de sus datos de fabricación, pero esto es imposible. Sin embargo, se tiene las redes neuronales artificiales que cumplen este papel, que luego de entrenadas se transforman en verdaderas funciones matemáticas que aproximan los valores esperados de las resistencias de las probetas de concreto. El nivel de aproximación se estima por la correlación entre la respuesta y el valor esperado de la red. Entonces resulta muy útil contar con una red neuronal que permita simular numéricamente la resistencia del concreto, incluso antes de su fabricación. En esta investigación se han obtenido diversas redes neuronales artificiales que pronostican la resistencia a compresión del CAR con correlaciones que varían entre 0.86 y 0.91.Universidad Nacional de Ingeniería2017-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfaudio/mpegtext/htmlhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/12510.21754/tecnia.v27i1.125TECNIA; Vol. 27 No. 1 (2017); 51-59TECNIA; Vol. 27 Núm. 1 (2017); 51-592309-04130375-7765reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/125/91https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/513https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/552Derechos de autor 2017 TECNIAhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/1252023-12-06T20:54:18Z
dc.title.none.fl_str_mv High performance concrete, prediction of its resistance to compression through artificial neuronal networks
Concreto de alto rendimiento, predicción de su resistencia a la compresión mediante redes neuronales artificiales
title High performance concrete, prediction of its resistance to compression through artificial neuronal networks
spellingShingle High performance concrete, prediction of its resistance to compression through artificial neuronal networks
Acuña P., Luis
Red Neuronal Artificial
probeta
compresión axial
aditivos
Artificial Neural Network
test tube
axial compression
additives
title_short High performance concrete, prediction of its resistance to compression through artificial neuronal networks
title_full High performance concrete, prediction of its resistance to compression through artificial neuronal networks
title_fullStr High performance concrete, prediction of its resistance to compression through artificial neuronal networks
title_full_unstemmed High performance concrete, prediction of its resistance to compression through artificial neuronal networks
title_sort High performance concrete, prediction of its resistance to compression through artificial neuronal networks
dc.creator.none.fl_str_mv Acuña P., Luis
Espinoza H., Pedro C.
Moromi N., Isabel
Torre C., Ana V.
García F., Francisco
author Acuña P., Luis
author_facet Acuña P., Luis
Espinoza H., Pedro C.
Moromi N., Isabel
Torre C., Ana V.
García F., Francisco
author_role author
author2 Espinoza H., Pedro C.
Moromi N., Isabel
Torre C., Ana V.
García F., Francisco
author2_role author
author
author
author
dc.subject.none.fl_str_mv Red Neuronal Artificial
probeta
compresión axial
aditivos
Artificial Neural Network
test tube
axial compression
additives
topic Red Neuronal Artificial
probeta
compresión axial
aditivos
Artificial Neural Network
test tube
axial compression
additives
description The building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the basic components such as water, Cement, fine and coarse aggregates, contain other cementing additives, such as microsílices. The problem is to get a technological resource that helps predict the resistance of CAR from its manufacturing data, but this is impossible. However, we have artificial neural networks that fulfill this role, which after being transformed into true mathematical functions that approximate the expected values ??of the resistance of concrete specimens. The approximation level is estimated by the correlation between the response and the expected value of the network. It is then very useful to have a neural network that simulates numerically the resistance of the concrete, even before its manufacture. In this investigation, several artificial neural networks have been obtained that predict the resistance to compression of the CAR with correlations that vary between 0.86 and 0.91.  
publishDate 2017
dc.date.none.fl_str_mv 2017-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/125
10.21754/tecnia.v27i1.125
url https://revistas.uni.edu.pe/index.php/tecnia/article/view/125
identifier_str_mv 10.21754/tecnia.v27i1.125
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/91
https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/513
https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/552
dc.rights.none.fl_str_mv Derechos de autor 2017 TECNIA
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 TECNIA
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
audio/mpeg
text/html
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv TECNIA; Vol. 27 No. 1 (2017); 51-59
TECNIA; Vol. 27 Núm. 1 (2017); 51-59
2309-0413
0375-7765
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1833562776014946304
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).