High performance concrete, prediction of its resistance to compression through artificial neuronal networks
Descripción del Articulo
The building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the ba...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | Revistas - Universidad Nacional de Ingeniería |
Lenguaje: | español |
OAI Identifier: | oai:oai:revistas.uni.edu.pe:article/125 |
Enlace del recurso: | https://revistas.uni.edu.pe/index.php/tecnia/article/view/125 |
Nivel de acceso: | acceso abierto |
Materia: | Red Neuronal Artificial probeta compresión axial aditivos Artificial Neural Network test tube axial compression additives |
id |
REVUNI_d2a02afcc6c22c05d054e8646aad1cd9 |
---|---|
oai_identifier_str |
oai:oai:revistas.uni.edu.pe:article/125 |
network_acronym_str |
REVUNI |
network_name_str |
Revistas - Universidad Nacional de Ingeniería |
repository_id_str |
|
spelling |
High performance concrete, prediction of its resistance to compression through artificial neuronal networksConcreto de alto rendimiento, predicción de su resistencia a la compresión mediante redes neuronales artificialesAcuña P., LuisEspinoza H., Pedro C.Moromi N., IsabelTorre C., Ana V.García F., FranciscoRed Neuronal Artificialprobetacompresión axialaditivosArtificial Neural Networktest tubeaxial compressionadditivesThe building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the basic components such as water, Cement, fine and coarse aggregates, contain other cementing additives, such as microsílices. The problem is to get a technological resource that helps predict the resistance of CAR from its manufacturing data, but this is impossible. However, we have artificial neural networks that fulfill this role, which after being transformed into true mathematical functions that approximate the expected values ??of the resistance of concrete specimens. The approximation level is estimated by the correlation between the response and the expected value of the network. It is then very useful to have a neural network that simulates numerically the resistance of the concrete, even before its manufacture. In this investigation, several artificial neural networks have been obtained that predict the resistance to compression of the CAR with correlations that vary between 0.86 and 0.91. En las edificaciones de las viviendas modernas el concreto es un elemento fundamental que interviene. De otro lado en las construcciones de puentes, diques, túneles, esto es en la construcción de estructuras no estándares de la ingeniería civil, el concreto que se utiliza es el de alto rendimiento (CAR) que aparte de los componentes básicos como el agua, cemento, agregados finos y gruesos, contienen otros aditivos cementantes, como las microsílices. El problema es conseguir un recurso tecnológico que ayude a pronosticar la resistencia de CAR a partir de sus datos de fabricación, pero esto es imposible. Sin embargo, se tiene las redes neuronales artificiales que cumplen este papel, que luego de entrenadas se transforman en verdaderas funciones matemáticas que aproximan los valores esperados de las resistencias de las probetas de concreto. El nivel de aproximación se estima por la correlación entre la respuesta y el valor esperado de la red. Entonces resulta muy útil contar con una red neuronal que permita simular numéricamente la resistencia del concreto, incluso antes de su fabricación. En esta investigación se han obtenido diversas redes neuronales artificiales que pronostican la resistencia a compresión del CAR con correlaciones que varían entre 0.86 y 0.91.Universidad Nacional de Ingeniería2017-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfaudio/mpegtext/htmlhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/12510.21754/tecnia.v27i1.125TECNIA; Vol. 27 No. 1 (2017); 51-59TECNIA; Vol. 27 Núm. 1 (2017); 51-592309-04130375-7765reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/125/91https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/513https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/552Derechos de autor 2017 TECNIAhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/1252023-12-06T20:54:18Z |
dc.title.none.fl_str_mv |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks Concreto de alto rendimiento, predicción de su resistencia a la compresión mediante redes neuronales artificiales |
title |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks |
spellingShingle |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks Acuña P., Luis Red Neuronal Artificial probeta compresión axial aditivos Artificial Neural Network test tube axial compression additives |
title_short |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks |
title_full |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks |
title_fullStr |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks |
title_full_unstemmed |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks |
title_sort |
High performance concrete, prediction of its resistance to compression through artificial neuronal networks |
dc.creator.none.fl_str_mv |
Acuña P., Luis Espinoza H., Pedro C. Moromi N., Isabel Torre C., Ana V. García F., Francisco |
author |
Acuña P., Luis |
author_facet |
Acuña P., Luis Espinoza H., Pedro C. Moromi N., Isabel Torre C., Ana V. García F., Francisco |
author_role |
author |
author2 |
Espinoza H., Pedro C. Moromi N., Isabel Torre C., Ana V. García F., Francisco |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Red Neuronal Artificial probeta compresión axial aditivos Artificial Neural Network test tube axial compression additives |
topic |
Red Neuronal Artificial probeta compresión axial aditivos Artificial Neural Network test tube axial compression additives |
description |
The building of modern housing concrete is a fundamental element that intervenes. On the other hand, in the construction of bridges, dams, tunnels, this is in the construction of non‐standard civil engineering structures, the concrete that is used is the high performance (CAR) that apart from the basic components such as water, Cement, fine and coarse aggregates, contain other cementing additives, such as microsílices. The problem is to get a technological resource that helps predict the resistance of CAR from its manufacturing data, but this is impossible. However, we have artificial neural networks that fulfill this role, which after being transformed into true mathematical functions that approximate the expected values ??of the resistance of concrete specimens. The approximation level is estimated by the correlation between the response and the expected value of the network. It is then very useful to have a neural network that simulates numerically the resistance of the concrete, even before its manufacture. In this investigation, several artificial neural networks have been obtained that predict the resistance to compression of the CAR with correlations that vary between 0.86 and 0.91. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/125 10.21754/tecnia.v27i1.125 |
url |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/125 |
identifier_str_mv |
10.21754/tecnia.v27i1.125 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/91 https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/513 https://revistas.uni.edu.pe/index.php/tecnia/article/view/125/552 |
dc.rights.none.fl_str_mv |
Derechos de autor 2017 TECNIA http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2017 TECNIA http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf audio/mpeg text/html |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
publisher.none.fl_str_mv |
Universidad Nacional de Ingeniería |
dc.source.none.fl_str_mv |
TECNIA; Vol. 27 No. 1 (2017); 51-59 TECNIA; Vol. 27 Núm. 1 (2017); 51-59 2309-0413 0375-7765 reponame:Revistas - Universidad Nacional de Ingeniería instname:Universidad Nacional de Ingeniería instacron:UNI |
instname_str |
Universidad Nacional de Ingeniería |
instacron_str |
UNI |
institution |
UNI |
reponame_str |
Revistas - Universidad Nacional de Ingeniería |
collection |
Revistas - Universidad Nacional de Ingeniería |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1833562776014946304 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).