IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
Descripción del Articulo
In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of t...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Nacional Autónoma de Chota |
| Repositorio: | UNACH-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.unach.edu.pe:20.500.14142/358 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14142/358 https://doi.org/10.1007/s11042-022-14270-4 |
| Nivel de acceso: | acceso abierto |
| Materia: | Fractional order IoT Mean squareerror Artificial neural networks Scaledconjugate gradien Reference results http://purl.org/pe-repo/ocde/ford#1.01.00 |
| id |
UNCH_429fd0a6022453eda0f7370f53b8e7f1 |
|---|---|
| oai_identifier_str |
oai:repositorio.unach.edu.pe:20.500.14142/358 |
| network_acronym_str |
UNCH |
| network_name_str |
UNACH-Institucional |
| repository_id_str |
4826 |
| spelling |
Sohaib LatifZulqurnain SabirMuhammad Asif Zahoor RajaCieza Altamirano, GilderSandoval Núñez, Rafaél ArtidoroOseda Gago, DulioR. SadatMohamed R. Ali2023-03-08T15:20:32Z2023-03-08T15:20:32Z2022-11-19http://hdl.handle.net/20.500.14142/358https://doi.org/10.1007/s11042-022-14270-4In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implementation, the data statistics are picked as 78% for training, 11% for both authorization and testing samples to approximate the solutions. The accuracy of the ANN-SCG technique is seen by correlation of the determined outcomes and the information base on Adams-Bashforth-Moulton method based standard solutions. To achieve the capacity, legitimacy, consistent quality, fitness, and accuracy of the ANN-SCG strategy, the reproductions-based error histograms (EHs), MSE, regression, and state transitions (STs) are used for extensive experimentations.application/pdfengspringer LinkCFMultimedia Tools and Applications (2022)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Fractional orderIoTMean squareerrorArtificial neural networksScaledconjugate gradienReference resultshttp://purl.org/pe-repo/ocde/ford#1.01.00IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UNACH-Institucionalinstname:Universidad Nacional Autónoma de Chotainstacron:UNACHORIGINALAbstract..pdfAbstract..pdfapplication/pdf393043https://repositorio.unach.edu.pe/bitstreams/f7895de0-0873-4263-9d7c-0695cd1475ef/download11e2636481c47ad66f53b9d0ddc801f4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unach.edu.pe/bitstreams/749a6b64-238c-438d-867c-a77a403935e7/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILportada 358.pngportada 358.pngimage/png112270https://repositorio.unach.edu.pe/bitstreams/b6d61a9e-d4eb-412d-bccd-eb8bba62dffd/downloada294a43f68a8c3eec45909a643e79405MD5320.500.14142/358oai:repositorio.unach.edu.pe:20.500.14142/3582023-03-08 16:23:09.061https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unach.edu.peRepositorio UNACHdspace-help@myu.edu |
| dc.title.es_ES.fl_str_mv |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| title |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| spellingShingle |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model Sohaib Latif Fractional order IoT Mean squareerror Artificial neural networks Scaledconjugate gradien Reference results http://purl.org/pe-repo/ocde/ford#1.01.00 |
| title_short |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| title_full |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| title_fullStr |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| title_full_unstemmed |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| title_sort |
IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model |
| author |
Sohaib Latif |
| author_facet |
Sohaib Latif Zulqurnain Sabir Muhammad Asif Zahoor Raja Cieza Altamirano, Gilder Sandoval Núñez, Rafaél Artidoro Oseda Gago, Dulio R. Sadat Mohamed R. Ali |
| author_role |
author |
| author2 |
Zulqurnain Sabir Muhammad Asif Zahoor Raja Cieza Altamirano, Gilder Sandoval Núñez, Rafaél Artidoro Oseda Gago, Dulio R. Sadat Mohamed R. Ali |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Sohaib Latif Zulqurnain Sabir Muhammad Asif Zahoor Raja Cieza Altamirano, Gilder Sandoval Núñez, Rafaél Artidoro Oseda Gago, Dulio R. Sadat Mohamed R. Ali |
| dc.subject.es_ES.fl_str_mv |
Fractional order IoT Mean squareerror Artificial neural networks Scaledconjugate gradien Reference results |
| topic |
Fractional order IoT Mean squareerror Artificial neural networks Scaledconjugate gradien Reference results http://purl.org/pe-repo/ocde/ford#1.01.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.00 |
| description |
In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implementation, the data statistics are picked as 78% for training, 11% for both authorization and testing samples to approximate the solutions. The accuracy of the ANN-SCG technique is seen by correlation of the determined outcomes and the information base on Adams-Bashforth-Moulton method based standard solutions. To achieve the capacity, legitimacy, consistent quality, fitness, and accuracy of the ANN-SCG strategy, the reproductions-based error histograms (EHs), MSE, regression, and state transitions (STs) are used for extensive experimentations. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-03-08T15:20:32Z |
| dc.date.available.none.fl_str_mv |
2023-03-08T15:20:32Z |
| dc.date.issued.fl_str_mv |
2022-11-19 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_ES.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14142/358 |
| dc.identifier.doi.es_ES.fl_str_mv |
https://doi.org/10.1007/s11042-022-14270-4 |
| url |
http://hdl.handle.net/20.500.14142/358 https://doi.org/10.1007/s11042-022-14270-4 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.es_ES.fl_str_mv |
Multimedia Tools and Applications (2022) |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_ES.fl_str_mv |
application/pdf |
| dc.publisher.es_ES.fl_str_mv |
springer Link |
| dc.publisher.country.es_ES.fl_str_mv |
CF |
| dc.source.none.fl_str_mv |
reponame:UNACH-Institucional instname:Universidad Nacional Autónoma de Chota instacron:UNACH |
| instname_str |
Universidad Nacional Autónoma de Chota |
| instacron_str |
UNACH |
| institution |
UNACH |
| reponame_str |
UNACH-Institucional |
| collection |
UNACH-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.unach.edu.pe/bitstreams/f7895de0-0873-4263-9d7c-0695cd1475ef/download https://repositorio.unach.edu.pe/bitstreams/749a6b64-238c-438d-867c-a77a403935e7/download https://repositorio.unach.edu.pe/bitstreams/b6d61a9e-d4eb-412d-bccd-eb8bba62dffd/download |
| bitstream.checksum.fl_str_mv |
11e2636481c47ad66f53b9d0ddc801f4 8a4605be74aa9ea9d79846c1fba20a33 a294a43f68a8c3eec45909a643e79405 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio UNACH |
| repository.mail.fl_str_mv |
dspace-help@myu.edu |
| _version_ |
1834655619955556352 |
| score |
13.932913 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).