IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model

Descripción del Articulo

In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of t...

Descripción completa

Detalles Bibliográficos
Autores: Sohaib Latif, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Cieza Altamirano, Gilder, Sandoval Núñez, Rafaél Artidoro, Oseda Gago, Dulio, R. Sadat, Mohamed R. Ali
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Autónoma de Chota
Repositorio:UNACH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unach.edu.pe:20.500.14142/358
Enlace del recurso:http://hdl.handle.net/20.500.14142/358
https://doi.org/10.1007/s11042-022-14270-4
Nivel de acceso:acceso abierto
Materia:Fractional order
IoT
Mean squareerror
Artificial neural networks
Scaledconjugate gradien
Reference results
http://purl.org/pe-repo/ocde/ford#1.01.00
id UNCH_429fd0a6022453eda0f7370f53b8e7f1
oai_identifier_str oai:repositorio.unach.edu.pe:20.500.14142/358
network_acronym_str UNCH
network_name_str UNACH-Institucional
repository_id_str 4826
spelling Sohaib LatifZulqurnain SabirMuhammad Asif Zahoor RajaCieza Altamirano, GilderSandoval Núñez, Rafaél ArtidoroOseda Gago, DulioR. SadatMohamed R. Ali2023-03-08T15:20:32Z2023-03-08T15:20:32Z2022-11-19http://hdl.handle.net/20.500.14142/358https://doi.org/10.1007/s11042-022-14270-4In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implementation, the data statistics are picked as 78% for training, 11% for both authorization and testing samples to approximate the solutions. The accuracy of the ANN-SCG technique is seen by correlation of the determined outcomes and the information base on Adams-Bashforth-Moulton method based standard solutions. To achieve the capacity, legitimacy, consistent quality, fitness, and accuracy of the ANN-SCG strategy, the reproductions-based error histograms (EHs), MSE, regression, and state transitions (STs) are used for extensive experimentations.application/pdfengspringer LinkCFMultimedia Tools and Applications (2022)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Fractional orderIoTMean squareerrorArtificial neural networksScaledconjugate gradienReference resultshttp://purl.org/pe-repo/ocde/ford#1.01.00IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UNACH-Institucionalinstname:Universidad Nacional Autónoma de Chotainstacron:UNACHORIGINALAbstract..pdfAbstract..pdfapplication/pdf393043https://repositorio.unach.edu.pe/bitstreams/f7895de0-0873-4263-9d7c-0695cd1475ef/download11e2636481c47ad66f53b9d0ddc801f4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unach.edu.pe/bitstreams/749a6b64-238c-438d-867c-a77a403935e7/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILportada 358.pngportada 358.pngimage/png112270https://repositorio.unach.edu.pe/bitstreams/b6d61a9e-d4eb-412d-bccd-eb8bba62dffd/downloada294a43f68a8c3eec45909a643e79405MD5320.500.14142/358oai:repositorio.unach.edu.pe:20.500.14142/3582023-03-08 16:23:09.061https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unach.edu.peRepositorio UNACHdspace-help@myu.edu
dc.title.es_ES.fl_str_mv IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
title IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
spellingShingle IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
Sohaib Latif
Fractional order
IoT
Mean squareerror
Artificial neural networks
Scaledconjugate gradien
Reference results
http://purl.org/pe-repo/ocde/ford#1.01.00
title_short IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
title_full IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
title_fullStr IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
title_full_unstemmed IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
title_sort IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model
author Sohaib Latif
author_facet Sohaib Latif
Zulqurnain Sabir
Muhammad Asif Zahoor Raja
Cieza Altamirano, Gilder
Sandoval Núñez, Rafaél Artidoro
Oseda Gago, Dulio
R. Sadat
Mohamed R. Ali
author_role author
author2 Zulqurnain Sabir
Muhammad Asif Zahoor Raja
Cieza Altamirano, Gilder
Sandoval Núñez, Rafaél Artidoro
Oseda Gago, Dulio
R. Sadat
Mohamed R. Ali
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Sohaib Latif
Zulqurnain Sabir
Muhammad Asif Zahoor Raja
Cieza Altamirano, Gilder
Sandoval Núñez, Rafaél Artidoro
Oseda Gago, Dulio
R. Sadat
Mohamed R. Ali
dc.subject.es_ES.fl_str_mv Fractional order
IoT
Mean squareerror
Artificial neural networks
Scaledconjugate gradien
Reference results
topic Fractional order
IoT
Mean squareerror
Artificial neural networks
Scaledconjugate gradien
Reference results
http://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.00
description In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implementation, the data statistics are picked as 78% for training, 11% for both authorization and testing samples to approximate the solutions. The accuracy of the ANN-SCG technique is seen by correlation of the determined outcomes and the information base on Adams-Bashforth-Moulton method based standard solutions. To achieve the capacity, legitimacy, consistent quality, fitness, and accuracy of the ANN-SCG strategy, the reproductions-based error histograms (EHs), MSE, regression, and state transitions (STs) are used for extensive experimentations.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-08T15:20:32Z
dc.date.available.none.fl_str_mv 2023-03-08T15:20:32Z
dc.date.issued.fl_str_mv 2022-11-19
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14142/358
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.1007/s11042-022-14270-4
url http://hdl.handle.net/20.500.14142/358
https://doi.org/10.1007/s11042-022-14270-4
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv Multimedia Tools and Applications (2022)
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv springer Link
dc.publisher.country.es_ES.fl_str_mv CF
dc.source.none.fl_str_mv reponame:UNACH-Institucional
instname:Universidad Nacional Autónoma de Chota
instacron:UNACH
instname_str Universidad Nacional Autónoma de Chota
instacron_str UNACH
institution UNACH
reponame_str UNACH-Institucional
collection UNACH-Institucional
bitstream.url.fl_str_mv https://repositorio.unach.edu.pe/bitstreams/f7895de0-0873-4263-9d7c-0695cd1475ef/download
https://repositorio.unach.edu.pe/bitstreams/749a6b64-238c-438d-867c-a77a403935e7/download
https://repositorio.unach.edu.pe/bitstreams/b6d61a9e-d4eb-412d-bccd-eb8bba62dffd/download
bitstream.checksum.fl_str_mv 11e2636481c47ad66f53b9d0ddc801f4
8a4605be74aa9ea9d79846c1fba20a33
a294a43f68a8c3eec45909a643e79405
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNACH
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1834655619955556352
score 13.932913
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).