1
artículo
The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS are provided by using the artificial neural networks (ANNs) together with the swarming computational paradigm-based particle swarm optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches. The ANNs-PSO-IPA has never been applied to solve the IDS. Instead a merit function in the sense of mean square error is constructed using the differential form of each class of the IDS and then optimized by the PSOIPA. The correctness and accuracy of the scheme are observed to perform the comparative analysis of the obtained IDS results with the Adams solutions (ref...
2
artículo
Publicado 2022
Enlace
Enlace
The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model. The combination of the Genetic algorithm (GA) and active-set approach (ASA), i.e., GA-ASA, works as a global-local search scheme to solve the SEIR-NDC model. An error-based fitness function is optimized through the hybrid combination of the GA-ASA by using the differential SEIR-NDC model and its initial conditions. The numerical performances of the SEIR-NDC nonlinear model are presented through the procedures of ANNs along with GA-ASA by taking ten neurons. The orrectness of the designed scheme is observed by comparing the obtained results based on the SEIR-NDC model and the reference Adams method. The absolute error performances are perf...
3
artículo
Publicado 2022
Enlace
Enlace
In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implemen...