IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model

Descripción del Articulo

In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of t...

Descripción completa

Detalles Bibliográficos
Autores: Sohaib Latif, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Cieza Altamirano, Gilder, Sandoval Núñez, Rafaél Artidoro, Oseda Gago, Dulio, R. Sadat, Mohamed R. Ali
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Autónoma de Chota
Repositorio:UNACH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unach.edu.pe:20.500.14142/358
Enlace del recurso:http://hdl.handle.net/20.500.14142/358
https://doi.org/10.1007/s11042-022-14270-4
Nivel de acceso:acceso abierto
Materia:Fractional order
IoT
Mean squareerror
Artificial neural networks
Scaledconjugate gradien
Reference results
http://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:In this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implementation, the data statistics are picked as 78% for training, 11% for both authorization and testing samples to approximate the solutions. The accuracy of the ANN-SCG technique is seen by correlation of the determined outcomes and the information base on Adams-Bashforth-Moulton method based standard solutions. To achieve the capacity, legitimacy, consistent quality, fitness, and accuracy of the ANN-SCG strategy, the reproductions-based error histograms (EHs), MSE, regression, and state transitions (STs) are used for extensive experimentations.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).