Swarming Computational Techniques for the Influenza Disease System

Descripción del Articulo

The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS a...

Descripción completa

Detalles Bibliográficos
Autores: Cieza Altamirano, Gilder, Sakda Noinang, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Manuel Jesús Sànchez-Chero, Seminario-Morales, María-Verónica, Wajaree Weera, Thongchai Botmart
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Autónoma de Chota
Repositorio:UNACH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unach.edu.pe:20.500.14142/356
Enlace del recurso:http://hdl.handle.net/20.500.14142/356
http://dx.doi.org/10.32604/cmc.2022.029437
Nivel de acceso:acceso abierto
Materia:Disease
influenza model
reference results
particle swarm optimization
artificial neural networks
interior-point scheme
statistical investigations
http://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS are provided by using the artificial neural networks (ANNs) together with the swarming computational paradigm-based particle swarm optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches. The ANNs-PSO-IPA has never been applied to solve the IDS. Instead a merit function in the sense of mean square error is constructed using the differential form of each class of the IDS and then optimized by the PSOIPA. The correctness and accuracy of the scheme are observed to perform the comparative analysis of the obtained IDS results with the Adams solutions (reference solutions). An absolute error in suitable measures shows the precision of the proposed ANNs procedures and the optimization efficiency of the PSOIPA. Furthermore, the reliability and competence of the proposed computing method are enhanced through the statistical performances.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).