Swarming Computational Techniques for the Influenza Disease System

Descripción del Articulo

The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS a...

Descripción completa

Detalles Bibliográficos
Autores: Cieza Altamirano, Gilder, Sakda Noinang, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Manuel Jesús Sànchez-Chero, Seminario-Morales, María-Verónica, Wajaree Weera, Thongchai Botmart
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Autónoma de Chota
Repositorio:UNACH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unach.edu.pe:20.500.14142/356
Enlace del recurso:http://hdl.handle.net/20.500.14142/356
http://dx.doi.org/10.32604/cmc.2022.029437
Nivel de acceso:acceso abierto
Materia:Disease
influenza model
reference results
particle swarm optimization
artificial neural networks
interior-point scheme
statistical investigations
http://purl.org/pe-repo/ocde/ford#1.01.02
id UNCH_52112837aa90a69e5745772c24a4c811
oai_identifier_str oai:repositorio.unach.edu.pe:20.500.14142/356
network_acronym_str UNCH
network_name_str UNACH-Institucional
repository_id_str 4826
spelling Cieza Altamirano, GilderSakda NoinangZulqurnain SabirMuhammad Asif Zahoor RajaManuel Jesús Sànchez-CheroSeminario-Morales, María-VerónicaWajaree WeeraThongchai Botmart2023-03-07T21:49:00Z2023-03-07T21:49:00Z2022-07-28http://hdl.handle.net/20.500.14142/356http://dx.doi.org/10.32604/cmc.2022.029437The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS are provided by using the artificial neural networks (ANNs) together with the swarming computational paradigm-based particle swarm optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches. The ANNs-PSO-IPA has never been applied to solve the IDS. Instead a merit function in the sense of mean square error is constructed using the differential form of each class of the IDS and then optimized by the PSOIPA. The correctness and accuracy of the scheme are observed to perform the comparative analysis of the obtained IDS results with the Adams solutions (reference solutions). An absolute error in suitable measures shows the precision of the proposed ANNs procedures and the optimization efficiency of the PSOIPA. Furthermore, the reliability and competence of the proposed computing method are enhanced through the statistical performances.application/pdfengTech Science PressASComputers, Materials & Continuainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/CMC, 2022, vol.73, no.3reponame:UNACH-Institucionalinstname:Universidad Nacional Autónoma de Chotainstacron:UNACHDiseaseinfluenza modelreference resultsparticle swarm optimizationartificial neural networksinterior-point schemestatistical investigationshttp://purl.org/pe-repo/ocde/ford#1.01.02Swarming Computational Techniques for the Influenza Disease Systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALAbstract 2.pdfAbstract 2.pdfapplication/pdf207131https://repositorio.unach.edu.pe/bitstreams/37103b0c-bbf1-4ad9-9053-70c2b06edbd7/downloaddab9d4d5202df465bd8b3eee00814095MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unach.edu.pe/bitstreams/e5433211-3dc0-4ccd-b6eb-e7eecf6ef26a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILportada 356.pngportada 356.pngimage/png110831https://repositorio.unach.edu.pe/bitstreams/ba64ddfc-eb1b-484e-8a8e-cc5a77478536/download652f9e9624b0a4eff6ade9508161c8f3MD5320.500.14142/356oai:repositorio.unach.edu.pe:20.500.14142/3562023-03-07 22:52:44.082https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unach.edu.peRepositorio UNACHdspace-help@myu.edu
dc.title.es_ES.fl_str_mv Swarming Computational Techniques for the Influenza Disease System
title Swarming Computational Techniques for the Influenza Disease System
spellingShingle Swarming Computational Techniques for the Influenza Disease System
Cieza Altamirano, Gilder
Disease
influenza model
reference results
particle swarm optimization
artificial neural networks
interior-point scheme
statistical investigations
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short Swarming Computational Techniques for the Influenza Disease System
title_full Swarming Computational Techniques for the Influenza Disease System
title_fullStr Swarming Computational Techniques for the Influenza Disease System
title_full_unstemmed Swarming Computational Techniques for the Influenza Disease System
title_sort Swarming Computational Techniques for the Influenza Disease System
author Cieza Altamirano, Gilder
author_facet Cieza Altamirano, Gilder
Sakda Noinang
Zulqurnain Sabir
Muhammad Asif Zahoor Raja
Manuel Jesús Sànchez-Chero
Seminario-Morales, María-Verónica
Wajaree Weera
Thongchai Botmart
author_role author
author2 Sakda Noinang
Zulqurnain Sabir
Muhammad Asif Zahoor Raja
Manuel Jesús Sànchez-Chero
Seminario-Morales, María-Verónica
Wajaree Weera
Thongchai Botmart
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Cieza Altamirano, Gilder
Sakda Noinang
Zulqurnain Sabir
Muhammad Asif Zahoor Raja
Manuel Jesús Sànchez-Chero
Seminario-Morales, María-Verónica
Wajaree Weera
Thongchai Botmart
dc.subject.es_ES.fl_str_mv Disease
influenza model
reference results
particle swarm optimization
artificial neural networks
interior-point scheme
statistical investigations
topic Disease
influenza model
reference results
particle swarm optimization
artificial neural networks
interior-point scheme
statistical investigations
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS are provided by using the artificial neural networks (ANNs) together with the swarming computational paradigm-based particle swarm optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches. The ANNs-PSO-IPA has never been applied to solve the IDS. Instead a merit function in the sense of mean square error is constructed using the differential form of each class of the IDS and then optimized by the PSOIPA. The correctness and accuracy of the scheme are observed to perform the comparative analysis of the obtained IDS results with the Adams solutions (reference solutions). An absolute error in suitable measures shows the precision of the proposed ANNs procedures and the optimization efficiency of the PSOIPA. Furthermore, the reliability and competence of the proposed computing method are enhanced through the statistical performances.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-07T21:49:00Z
dc.date.available.none.fl_str_mv 2023-03-07T21:49:00Z
dc.date.issued.fl_str_mv 2022-07-28
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14142/356
dc.identifier.doi.es_ES.fl_str_mv http://dx.doi.org/10.32604/cmc.2022.029437
url http://hdl.handle.net/20.500.14142/356
http://dx.doi.org/10.32604/cmc.2022.029437
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv Computers, Materials & Continua
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Tech Science Press
dc.publisher.country.es_ES.fl_str_mv AS
dc.source.es_ES.fl_str_mv CMC, 2022, vol.73, no.3
dc.source.none.fl_str_mv reponame:UNACH-Institucional
instname:Universidad Nacional Autónoma de Chota
instacron:UNACH
instname_str Universidad Nacional Autónoma de Chota
instacron_str UNACH
institution UNACH
reponame_str UNACH-Institucional
collection UNACH-Institucional
bitstream.url.fl_str_mv https://repositorio.unach.edu.pe/bitstreams/37103b0c-bbf1-4ad9-9053-70c2b06edbd7/download
https://repositorio.unach.edu.pe/bitstreams/e5433211-3dc0-4ccd-b6eb-e7eecf6ef26a/download
https://repositorio.unach.edu.pe/bitstreams/ba64ddfc-eb1b-484e-8a8e-cc5a77478536/download
bitstream.checksum.fl_str_mv dab9d4d5202df465bd8b3eee00814095
8a4605be74aa9ea9d79846c1fba20a33
652f9e9624b0a4eff6ade9508161c8f3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNACH
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1834655620213506048
score 13.914502
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).