Swarming Computational Techniques for the Influenza Disease System
Descripción del Articulo
The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS a...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional Autónoma de Chota |
Repositorio: | UNACH-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.unach.edu.pe:20.500.14142/356 |
Enlace del recurso: | http://hdl.handle.net/20.500.14142/356 http://dx.doi.org/10.32604/cmc.2022.029437 |
Nivel de acceso: | acceso abierto |
Materia: | Disease influenza model reference results particle swarm optimization artificial neural networks interior-point scheme statistical investigations http://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
UNCH_52112837aa90a69e5745772c24a4c811 |
---|---|
oai_identifier_str |
oai:repositorio.unach.edu.pe:20.500.14142/356 |
network_acronym_str |
UNCH |
network_name_str |
UNACH-Institucional |
repository_id_str |
4826 |
spelling |
Cieza Altamirano, GilderSakda NoinangZulqurnain SabirMuhammad Asif Zahoor RajaManuel Jesús Sànchez-CheroSeminario-Morales, María-VerónicaWajaree WeeraThongchai Botmart2023-03-07T21:49:00Z2023-03-07T21:49:00Z2022-07-28http://hdl.handle.net/20.500.14142/356http://dx.doi.org/10.32604/cmc.2022.029437The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS are provided by using the artificial neural networks (ANNs) together with the swarming computational paradigm-based particle swarm optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches. The ANNs-PSO-IPA has never been applied to solve the IDS. Instead a merit function in the sense of mean square error is constructed using the differential form of each class of the IDS and then optimized by the PSOIPA. The correctness and accuracy of the scheme are observed to perform the comparative analysis of the obtained IDS results with the Adams solutions (reference solutions). An absolute error in suitable measures shows the precision of the proposed ANNs procedures and the optimization efficiency of the PSOIPA. Furthermore, the reliability and competence of the proposed computing method are enhanced through the statistical performances.application/pdfengTech Science PressASComputers, Materials & Continuainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/CMC, 2022, vol.73, no.3reponame:UNACH-Institucionalinstname:Universidad Nacional Autónoma de Chotainstacron:UNACHDiseaseinfluenza modelreference resultsparticle swarm optimizationartificial neural networksinterior-point schemestatistical investigationshttp://purl.org/pe-repo/ocde/ford#1.01.02Swarming Computational Techniques for the Influenza Disease Systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALAbstract 2.pdfAbstract 2.pdfapplication/pdf207131https://repositorio.unach.edu.pe/bitstreams/37103b0c-bbf1-4ad9-9053-70c2b06edbd7/downloaddab9d4d5202df465bd8b3eee00814095MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unach.edu.pe/bitstreams/e5433211-3dc0-4ccd-b6eb-e7eecf6ef26a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILportada 356.pngportada 356.pngimage/png110831https://repositorio.unach.edu.pe/bitstreams/ba64ddfc-eb1b-484e-8a8e-cc5a77478536/download652f9e9624b0a4eff6ade9508161c8f3MD5320.500.14142/356oai:repositorio.unach.edu.pe:20.500.14142/3562023-03-07 22:52:44.082https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unach.edu.peRepositorio UNACHdspace-help@myu.edu |
dc.title.es_ES.fl_str_mv |
Swarming Computational Techniques for the Influenza Disease System |
title |
Swarming Computational Techniques for the Influenza Disease System |
spellingShingle |
Swarming Computational Techniques for the Influenza Disease System Cieza Altamirano, Gilder Disease influenza model reference results particle swarm optimization artificial neural networks interior-point scheme statistical investigations http://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
Swarming Computational Techniques for the Influenza Disease System |
title_full |
Swarming Computational Techniques for the Influenza Disease System |
title_fullStr |
Swarming Computational Techniques for the Influenza Disease System |
title_full_unstemmed |
Swarming Computational Techniques for the Influenza Disease System |
title_sort |
Swarming Computational Techniques for the Influenza Disease System |
author |
Cieza Altamirano, Gilder |
author_facet |
Cieza Altamirano, Gilder Sakda Noinang Zulqurnain Sabir Muhammad Asif Zahoor Raja Manuel Jesús Sànchez-Chero Seminario-Morales, María-Verónica Wajaree Weera Thongchai Botmart |
author_role |
author |
author2 |
Sakda Noinang Zulqurnain Sabir Muhammad Asif Zahoor Raja Manuel Jesús Sànchez-Chero Seminario-Morales, María-Verónica Wajaree Weera Thongchai Botmart |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Cieza Altamirano, Gilder Sakda Noinang Zulqurnain Sabir Muhammad Asif Zahoor Raja Manuel Jesús Sànchez-Chero Seminario-Morales, María-Verónica Wajaree Weera Thongchai Botmart |
dc.subject.es_ES.fl_str_mv |
Disease influenza model reference results particle swarm optimization artificial neural networks interior-point scheme statistical investigations |
topic |
Disease influenza model reference results particle swarm optimization artificial neural networks interior-point scheme statistical investigations http://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.ocde.es_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
The current study relates to designing a swarming computational paradigm to solve the influenza disease system (IDS). The nonlinear system’s mathematical form depends upon four classes: susceptible ndividuals, infected people, recovered individuals and cross-immune people. The solutions of the IDS are provided by using the artificial neural networks (ANNs) together with the swarming computational paradigm-based particle swarm optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches. The ANNs-PSO-IPA has never been applied to solve the IDS. Instead a merit function in the sense of mean square error is constructed using the differential form of each class of the IDS and then optimized by the PSOIPA. The correctness and accuracy of the scheme are observed to perform the comparative analysis of the obtained IDS results with the Adams solutions (reference solutions). An absolute error in suitable measures shows the precision of the proposed ANNs procedures and the optimization efficiency of the PSOIPA. Furthermore, the reliability and competence of the proposed computing method are enhanced through the statistical performances. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-03-07T21:49:00Z |
dc.date.available.none.fl_str_mv |
2023-03-07T21:49:00Z |
dc.date.issued.fl_str_mv |
2022-07-28 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_ES.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14142/356 |
dc.identifier.doi.es_ES.fl_str_mv |
http://dx.doi.org/10.32604/cmc.2022.029437 |
url |
http://hdl.handle.net/20.500.14142/356 http://dx.doi.org/10.32604/cmc.2022.029437 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.es_ES.fl_str_mv |
Computers, Materials & Continua |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_ES.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Tech Science Press |
dc.publisher.country.es_ES.fl_str_mv |
AS |
dc.source.es_ES.fl_str_mv |
CMC, 2022, vol.73, no.3 |
dc.source.none.fl_str_mv |
reponame:UNACH-Institucional instname:Universidad Nacional Autónoma de Chota instacron:UNACH |
instname_str |
Universidad Nacional Autónoma de Chota |
instacron_str |
UNACH |
institution |
UNACH |
reponame_str |
UNACH-Institucional |
collection |
UNACH-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.unach.edu.pe/bitstreams/37103b0c-bbf1-4ad9-9053-70c2b06edbd7/download https://repositorio.unach.edu.pe/bitstreams/e5433211-3dc0-4ccd-b6eb-e7eecf6ef26a/download https://repositorio.unach.edu.pe/bitstreams/ba64ddfc-eb1b-484e-8a8e-cc5a77478536/download |
bitstream.checksum.fl_str_mv |
dab9d4d5202df465bd8b3eee00814095 8a4605be74aa9ea9d79846c1fba20a33 652f9e9624b0a4eff6ade9508161c8f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UNACH |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1834655620213506048 |
score |
13.914502 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).