Teoría funtorial de la cohomología en la determinación de las equivalencias, de estructuras topológicas y las clases de homotopía

Descripción del Articulo

El presente trabajo de investigación se encuentra inmerso en la Teoría de Cohomología, lo cual una dualización algebraica del objeto denominado Homología. Su desarrollo lo iniciamos dando los conceptos de categorías y functores, para luego interpretar a la Homología singular como un funtor covariant...

Descripción completa

Detalles Bibliográficos
Autor: Mendoza Quispe, Wilfredo
Formato: informe técnico
Fecha de Publicación:2021
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/5589
Enlace del recurso:https://hdl.handle.net/20.500.12952/5589
Nivel de acceso:acceso abierto
Materia:Cohomología
Funtor
Equivalencias
Topológicas
Homotopía
CW – Complejos
Descripción
Sumario:El presente trabajo de investigación se encuentra inmerso en la Teoría de Cohomología, lo cual una dualización algebraica del objeto denominado Homología. Su desarrollo lo iniciamos dando los conceptos de categorías y functores, para luego interpretar a la Homología singular como un funtor covariante, seguidamente definimos los llamados CW – espacios y su descomposición que será de gran utilidad para establecer las operaciones cohomológicas. Estas operaciones nos permitirá estudiar los Axiomas de Eilemberg – Steenrod (E.S) que son aplicados a una sucesión Funtorial. Más específicamente se define una teoría de Homología.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).