Existencia global de soluciones periódicas para Sistemas Hiperbólico - Parabólico
Descripción del Articulo
En este trabajo estudiamos la existencia y unicidad de soluciones débiles para un sistema hiperbólico-parabólicos la forma: μ +f(μ)x = (B(μ)μx)x1 X$ ℇ R,t > 0 (1) μ(x,0)= μ0(x),x ℇ R (2) Donde μ∶ R x R + → R n es una función desconocida ,B∶ R n → Rnxn y f: Rn → Rn son funciones suaves dadas Los r...
| Autor: | |
|---|---|
| Formato: | informe técnico |
| Fecha de Publicación: | 2013 |
| Institución: | Universidad Nacional del Callao |
| Repositorio: | UNAC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.unac.edu.pe:20.500.12952/2010 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12952/2010 |
| Nivel de acceso: | acceso abierto |
| Materia: | Matemáticas Puras Sistema de ecuaciones diferenciales parciales Teorema del punto fijo de Schauder |
| Sumario: | En este trabajo estudiamos la existencia y unicidad de soluciones débiles para un sistema hiperbólico-parabólicos la forma: μ +f(μ)x = (B(μ)μx)x1 X$ ℇ R,t > 0 (1) μ(x,0)= μ0(x),x ℇ R (2) Donde μ∶ R x R + → R n es una función desconocida ,B∶ R n → Rnxn y f: Rn → Rn son funciones suaves dadas Los resultados de existencia de soluciones periódicas del problema, se obtienen usando el método de Faedo Galerkin y el teorema del punto fijo de Schauder. Estos resultados pueden ser aplicados a sistemas más generales siempre que admitan un dominio compacto invariante. Aquí, desarrollamos el caso de un sistema particular 2 x 2, el sistema de Keyfitz - Kranzer. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).