Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?

Descripción del Articulo

Evapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alte...

Descripción completa

Detalles Bibliográficos
Autores: Laqui, Wilber, Zubieta, Ricardo, Rau, P., Mejía, Abel, Lavado-Casimiro, W., Ingol, Eusebio
Formato: artículo
Fecha de Publicación:2019
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/467
Enlace del recurso:https://hdl.handle.net/20.500.12542/467
https://doi.org/10.1007/s40808-019-00647-2
Nivel de acceso:acceso embargado
Materia:Evapotranspiration
Ciclo Hidrológico
Modelos
Hidrología
Water Requirement
https://purl.org/pe-repo/ocde/ford#1.05.11
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
id SEAM_9513b813b720f2efc103f7b4a0de8451
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/467
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.none.fl_str_mv Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
title Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
spellingShingle Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
Laqui, Wilber
Evapotranspiration
Ciclo Hidrológico
Modelos
Hidrología
Water Requirement
https://purl.org/pe-repo/ocde/ford#1.05.11
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
title_short Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
title_full Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
title_fullStr Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
title_full_unstemmed Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
title_sort Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
author Laqui, Wilber
author_facet Laqui, Wilber
Zubieta, Ricardo
Rau, P.
Mejía, Abel
Lavado-Casimiro, W.
Ingol, Eusebio
author_role author
author2 Zubieta, Ricardo
Rau, P.
Mejía, Abel
Lavado-Casimiro, W.
Ingol, Eusebio
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Laqui, Wilber
Zubieta, Ricardo
Rau, P.
Mejía, Abel
Lavado-Casimiro, W.
Ingol, Eusebio
dc.subject.en_US.fl_str_mv Evapotranspiration
topic Evapotranspiration
Ciclo Hidrológico
Modelos
Hidrología
Water Requirement
https://purl.org/pe-repo/ocde/ford#1.05.11
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
dc.subject.none.fl_str_mv Ciclo Hidrológico
Modelos
Hidrología
Water Requirement
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.none.fl_str_mv investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental
description Evapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alternative method to estimate ETo in highland regions using a number of input variables limited. The objective of this study is to develop ANN models to estimate ETo for the Peruvian highlands using input variables such as maximum air temperature (Tmax), minimum air temperature (Tmin), hours of sunshine (Sh), relative humidity (Rh) and wind speed (Wv), as an alternative method to FAO Penman–Monteith method (FAO-PM56) and Hargreaves–Samani (HS). Daily climatic datasets recorded at 12 meteorological stations between 1963 and 2015 were selected in this study. For evaluation reason, the ETo calculated using the FAO-PM56 was also considered. The main input variable to ANN modeling is Tmax, followed by Sh and Wv or combinations between them. Hargreaves–Samani (HS) showed a poor performance in the estimation of the ETo in the Peruvian highlands compared to the 13 ANN models. Additionally, it was determined that in stations with lower thermal amplitude (< 14.2 °C) the lowest performance levels are presented in the estimation of the ETo with HS equation, which does not occur markedly with the ANN models that they estimate adequately ETo. Therefore, ANN models represent a great option to replace the FAO-PM56 and HS method, when ETo data series are scarce.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-08-18T22:05:04Z
dc.date.available.none.fl_str_mv 2020-08-18T22:05:04Z
dc.date.issued.fl_str_mv 2019-09-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.none.fl_str_mv text/publicacion cientifica
format article
dc.identifier.citation.en_US.fl_str_mv Wilber Laqui, Ricardo Zubieta,Pedro Rau, Abel Mejía, Waldo Lavado, Eusebio Ingol (2019). Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?. Model. Earth Syst. Environ. 5, 1911–1924. https://doi.org/10.1007/s40808-019-00647-2
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/467
dc.identifier.isni.none.fl_str_mv 0000 0001 0746 0446
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s40808-019-00647-2
dc.identifier.journal.none.fl_str_mv Modeling Earth Systems and Environment
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/467
identifier_str_mv Wilber Laqui, Ricardo Zubieta,Pedro Rau, Abel Mejía, Waldo Lavado, Eusebio Ingol (2019). Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?. Model. Earth Syst. Environ. 5, 1911–1924. https://doi.org/10.1007/s40808-019-00647-2
0000 0001 0746 0446
Modeling Earth Systems and Environment
url https://hdl.handle.net/20.500.12542/467
https://doi.org/10.1007/s40808-019-00647-2
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2363-6211
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.coverage.spatial.none.fl_str_mv Perú
Perú
dc.publisher.en_US.fl_str_mv  John Wiley and Sons 
dc.source.en_US.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/1/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/2/license.txt
bitstream.checksum.fl_str_mv 9868ccc48a14c8d591352b6eaf7f6239
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1808916938891460608
spelling Laqui, WilberZubieta, RicardoRau, P.Mejía, AbelLavado-Casimiro, W.Ingol, EusebioPerúPerú2020-08-18T22:05:04Z2020-08-18T22:05:04Z2019-09-26Wilber Laqui, Ricardo Zubieta,Pedro Rau, Abel Mejía, Waldo Lavado, Eusebio Ingol (2019). Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?. Model. Earth Syst. Environ. 5, 1911–1924. https://doi.org/10.1007/s40808-019-00647-2https://hdl.handle.net/20.500.12542/4670000 0001 0746 0446https://doi.org/10.1007/s40808-019-00647-2Modeling Earth Systems and Environmenthttps://hdl.handle.net/20.500.12542/467Evapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alternative method to estimate ETo in highland regions using a number of input variables limited. The objective of this study is to develop ANN models to estimate ETo for the Peruvian highlands using input variables such as maximum air temperature (Tmax), minimum air temperature (Tmin), hours of sunshine (Sh), relative humidity (Rh) and wind speed (Wv), as an alternative method to FAO Penman–Monteith method (FAO-PM56) and Hargreaves–Samani (HS). Daily climatic datasets recorded at 12 meteorological stations between 1963 and 2015 were selected in this study. For evaluation reason, the ETo calculated using the FAO-PM56 was also considered. The main input variable to ANN modeling is Tmax, followed by Sh and Wv or combinations between them. Hargreaves–Samani (HS) showed a poor performance in the estimation of the ETo in the Peruvian highlands compared to the 13 ANN models. Additionally, it was determined that in stations with lower thermal amplitude (< 14.2 °C) the lowest performance levels are presented in the estimation of the ETo with HS equation, which does not occur markedly with the ANN models that they estimate adequately ETo. Therefore, ANN models represent a great option to replace the FAO-PM56 and HS method, when ETo data series are scarce.Por pareseng John Wiley and Sons urn:issn:2363-6211info:eu-repo/semantics/embargoedAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIEvapotranspirationCiclo HidrológicoModelosHidrologíaWater Requirementhttps://purl.org/pe-repo/ocde/ford#1.05.11investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana AmbientalCan artificial neural networks estimate potential evapotranspiration in Peruvian highlands?info:eu-repo/semantics/articletext/publicacion cientificaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/1/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12542/467oai:repositorio.senamhi.gob.pe:20.500.12542/4672024-08-20 15:57:57.503Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.914502
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).