Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?
Descripción del Articulo
Evapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alte...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
Repositorio: | SENAMHI-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/467 |
Enlace del recurso: | https://hdl.handle.net/20.500.12542/467 https://doi.org/10.1007/s40808-019-00647-2 |
Nivel de acceso: | acceso embargado |
Materia: | Evapotranspiration Ciclo Hidrológico Modelos Hidrología Water Requirement https://purl.org/pe-repo/ocde/ford#1.05.11 investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental |
id |
SEAM_9513b813b720f2efc103f7b4a0de8451 |
---|---|
oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/467 |
network_acronym_str |
SEAM |
network_name_str |
SENAMHI-Institucional |
repository_id_str |
4818 |
dc.title.none.fl_str_mv |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
title |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
spellingShingle |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? Laqui, Wilber Evapotranspiration Ciclo Hidrológico Modelos Hidrología Water Requirement https://purl.org/pe-repo/ocde/ford#1.05.11 investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental |
title_short |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
title_full |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
title_fullStr |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
title_full_unstemmed |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
title_sort |
Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? |
author |
Laqui, Wilber |
author_facet |
Laqui, Wilber Zubieta, Ricardo Rau, P. Mejía, Abel Lavado-Casimiro, W. Ingol, Eusebio |
author_role |
author |
author2 |
Zubieta, Ricardo Rau, P. Mejía, Abel Lavado-Casimiro, W. Ingol, Eusebio |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Laqui, Wilber Zubieta, Ricardo Rau, P. Mejía, Abel Lavado-Casimiro, W. Ingol, Eusebio |
dc.subject.en_US.fl_str_mv |
Evapotranspiration |
topic |
Evapotranspiration Ciclo Hidrológico Modelos Hidrología Water Requirement https://purl.org/pe-repo/ocde/ford#1.05.11 investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental |
dc.subject.none.fl_str_mv |
Ciclo Hidrológico Modelos Hidrología Water Requirement |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
dc.subject.sinia.none.fl_str_mv |
investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana Ambiental |
description |
Evapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alternative method to estimate ETo in highland regions using a number of input variables limited. The objective of this study is to develop ANN models to estimate ETo for the Peruvian highlands using input variables such as maximum air temperature (Tmax), minimum air temperature (Tmin), hours of sunshine (Sh), relative humidity (Rh) and wind speed (Wv), as an alternative method to FAO Penman–Monteith method (FAO-PM56) and Hargreaves–Samani (HS). Daily climatic datasets recorded at 12 meteorological stations between 1963 and 2015 were selected in this study. For evaluation reason, the ETo calculated using the FAO-PM56 was also considered. The main input variable to ANN modeling is Tmax, followed by Sh and Wv or combinations between them. Hargreaves–Samani (HS) showed a poor performance in the estimation of the ETo in the Peruvian highlands compared to the 13 ANN models. Additionally, it was determined that in stations with lower thermal amplitude (< 14.2 °C) the lowest performance levels are presented in the estimation of the ETo with HS equation, which does not occur markedly with the ANN models that they estimate adequately ETo. Therefore, ANN models represent a great option to replace the FAO-PM56 and HS method, when ETo data series are scarce. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-08-18T22:05:04Z |
dc.date.available.none.fl_str_mv |
2020-08-18T22:05:04Z |
dc.date.issued.fl_str_mv |
2019-09-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.sinia.none.fl_str_mv |
text/publicacion cientifica |
format |
article |
dc.identifier.citation.en_US.fl_str_mv |
Wilber Laqui, Ricardo Zubieta,Pedro Rau, Abel Mejía, Waldo Lavado, Eusebio Ingol (2019). Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?. Model. Earth Syst. Environ. 5, 1911–1924. https://doi.org/10.1007/s40808-019-00647-2 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/467 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 0746 0446 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s40808-019-00647-2 |
dc.identifier.journal.none.fl_str_mv |
Modeling Earth Systems and Environment |
dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/467 |
identifier_str_mv |
Wilber Laqui, Ricardo Zubieta,Pedro Rau, Abel Mejía, Waldo Lavado, Eusebio Ingol (2019). Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?. Model. Earth Syst. Environ. 5, 1911–1924. https://doi.org/10.1007/s40808-019-00647-2 0000 0001 0746 0446 Modeling Earth Systems and Environment |
url |
https://hdl.handle.net/20.500.12542/467 https://doi.org/10.1007/s40808-019-00647-2 |
dc.language.iso.en_US.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2363-6211 |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
dc.coverage.spatial.none.fl_str_mv |
Perú Perú |
dc.publisher.en_US.fl_str_mv |
John Wiley and Sons |
dc.source.en_US.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
instacron_str |
SENAMHI |
institution |
SENAMHI |
reponame_str |
SENAMHI-Institucional |
collection |
SENAMHI-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/1/license_rdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/2/license.txt |
bitstream.checksum.fl_str_mv |
9868ccc48a14c8d591352b6eaf7f6239 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
_version_ |
1808916938891460608 |
spelling |
Laqui, WilberZubieta, RicardoRau, P.Mejía, AbelLavado-Casimiro, W.Ingol, EusebioPerúPerú2020-08-18T22:05:04Z2020-08-18T22:05:04Z2019-09-26Wilber Laqui, Ricardo Zubieta,Pedro Rau, Abel Mejía, Waldo Lavado, Eusebio Ingol (2019). Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?. Model. Earth Syst. Environ. 5, 1911–1924. https://doi.org/10.1007/s40808-019-00647-2https://hdl.handle.net/20.500.12542/4670000 0001 0746 0446https://doi.org/10.1007/s40808-019-00647-2Modeling Earth Systems and Environmenthttps://hdl.handle.net/20.500.12542/467Evapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alternative method to estimate ETo in highland regions using a number of input variables limited. The objective of this study is to develop ANN models to estimate ETo for the Peruvian highlands using input variables such as maximum air temperature (Tmax), minimum air temperature (Tmin), hours of sunshine (Sh), relative humidity (Rh) and wind speed (Wv), as an alternative method to FAO Penman–Monteith method (FAO-PM56) and Hargreaves–Samani (HS). Daily climatic datasets recorded at 12 meteorological stations between 1963 and 2015 were selected in this study. For evaluation reason, the ETo calculated using the FAO-PM56 was also considered. The main input variable to ANN modeling is Tmax, followed by Sh and Wv or combinations between them. Hargreaves–Samani (HS) showed a poor performance in the estimation of the ETo in the Peruvian highlands compared to the 13 ANN models. Additionally, it was determined that in stations with lower thermal amplitude (< 14.2 °C) the lowest performance levels are presented in the estimation of the ETo with HS equation, which does not occur markedly with the ANN models that they estimate adequately ETo. Therefore, ANN models represent a great option to replace the FAO-PM56 and HS method, when ETo data series are scarce.Por pareseng John Wiley and Sons urn:issn:2363-6211info:eu-repo/semantics/embargoedAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIEvapotranspirationCiclo HidrológicoModelosHidrologíaWater Requirementhttps://purl.org/pe-repo/ocde/ford#1.05.11investigaciones ambientales - Gestión, Fiscalización y Participación Ciudadana AmbientalCan artificial neural networks estimate potential evapotranspiration in Peruvian highlands?info:eu-repo/semantics/articletext/publicacion cientificaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/1/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/467/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12542/467oai:repositorio.senamhi.gob.pe:20.500.12542/4672024-08-20 15:57:57.503Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.914502 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).