Dataset of manually classified images obtained from a construction site
Descripción del Articulo
A manually classified dataset of images obtained by four static cameras located around a construction site is presented. Eight object classes, typically found in a construction environment, were considered. The dataset consists of 1046 images selected from video footage by a frame extraction algorit...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17770 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/17770 https://doi.org/10.1016/j.dib.2022.108042 |
Nivel de acceso: | acceso abierto |
Materia: | Building Neural networks (Computer science) Pattern perception Image processing Construcción Redes neuronales (Informática) Reconocimiento de formas Proceso de imágenes https://purl.org/pe-repo/ocde/ford#2.01.03 |
id |
RULI_ffb5d7f1ae9bc4f267102f066eef2d07 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17770 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Dataset of manually classified images obtained from a construction site |
title |
Dataset of manually classified images obtained from a construction site |
spellingShingle |
Dataset of manually classified images obtained from a construction site Del Savio, Alexandre Almeida Building Neural networks (Computer science) Pattern perception Image processing Construcción Redes neuronales (Informática) Reconocimiento de formas Proceso de imágenes https://purl.org/pe-repo/ocde/ford#2.01.03 |
title_short |
Dataset of manually classified images obtained from a construction site |
title_full |
Dataset of manually classified images obtained from a construction site |
title_fullStr |
Dataset of manually classified images obtained from a construction site |
title_full_unstemmed |
Dataset of manually classified images obtained from a construction site |
title_sort |
Dataset of manually classified images obtained from a construction site |
author |
Del Savio, Alexandre Almeida |
author_facet |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author_role |
author |
author2 |
Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author2_role |
author author author author |
dc.contributor.other.none.fl_str_mv |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra |
dc.contributor.student.none.fl_str_mv |
Urday Ibarra, Gianella Tania (Ingeniería de Sistemas) |
dc.contributor.author.fl_str_mv |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
dc.subject.en_EN.fl_str_mv |
Building Neural networks (Computer science) Pattern perception Image processing |
topic |
Building Neural networks (Computer science) Pattern perception Image processing Construcción Redes neuronales (Informática) Reconocimiento de formas Proceso de imágenes https://purl.org/pe-repo/ocde/ford#2.01.03 |
dc.subject.es_PE.fl_str_mv |
Construcción Redes neuronales (Informática) Reconocimiento de formas Proceso de imágenes |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.01.03 |
description |
A manually classified dataset of images obtained by four static cameras located around a construction site is presented. Eight object classes, typically found in a construction environment, were considered. The dataset consists of 1046 images selected from video footage by a frame extraction algorithm and txt files containing the objects' class and coordinates information. These data can be used to develop computer vision techniques in the engineering and construction fields. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-03-01T16:00:51Z |
dc.date.available.none.fl_str_mv |
2023-03-01T16:00:51Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Del Savio A., Luna A., Cárdenas-Salas D., Vergara M. & Urday, G. (2022). Dataset of manually classified images obtained from a construction site. Data in Brief, 42. http://doi.org/10.1016/j.dib.2022.108042 |
dc.identifier.issn.none.fl_str_mv |
2352-3409 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17770 |
dc.identifier.journal.none.fl_str_mv |
Data in Brief |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.dib.2022.108042 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85126605198 |
identifier_str_mv |
Del Savio A., Luna A., Cárdenas-Salas D., Vergara M. & Urday, G. (2022). Dataset of manually classified images obtained from a construction site. Data in Brief, 42. http://doi.org/10.1016/j.dib.2022.108042 2352-3409 Data in Brief 0000000121541816 2-s2.0-85126605198 |
url |
https://hdl.handle.net/20.500.12724/17770 https://doi.org/10.1016/j.dib.2022.108042 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2352-3409 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Elsevier |
dc.publisher.country.none.fl_str_mv |
NL |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17770/2/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1840270720973668352 |
spelling |
Del Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaCárdenas Salas, Daniel EnriqueVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella TaniaDel Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaCárdenas Salas, Daniel EnriqueVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)2023-03-01T16:00:51Z2023-03-01T16:00:51Z2022Del Savio A., Luna A., Cárdenas-Salas D., Vergara M. & Urday, G. (2022). Dataset of manually classified images obtained from a construction site. Data in Brief, 42. http://doi.org/10.1016/j.dib.2022.1080422352-3409https://hdl.handle.net/20.500.12724/17770Data in Brief0000000121541816https://doi.org/10.1016/j.dib.2022.1080422-s2.0-85126605198A manually classified dataset of images obtained by four static cameras located around a construction site is presented. Eight object classes, typically found in a construction environment, were considered. The dataset consists of 1046 images selected from video footage by a frame extraction algorithm and txt files containing the objects' class and coordinates information. These data can be used to develop computer vision techniques in the engineering and construction fields.application/htmlengElsevierNLurn:issn: 2352-3409info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMABuildingNeural networks (Computer science)Pattern perceptionImage processingConstrucciónRedes neuronales (Informática)Reconocimiento de formasProceso de imágeneshttps://purl.org/pe-repo/ocde/ford#2.01.03Dataset of manually classified images obtained from a construction siteinfo:eu-repo/semantics/articleArtículo en ScopusDel Savio, Alexandre Almeida (No figura en la lista del año 2021-2)Luna Torres, Ana Felícita (Ingeniería Civil)Cárdenas Salas, Daniel Enrique (Ingeniería de Sistemas)Vergara Olivera, Mónica Alejandra (Ingeniería Civil)Del Savio, Alexandre Almeida (Faculty of Engineering and Architecture, Universidad de Lima)Luna Torres, Ana Felícita (Faculty of Engineering and Architecture, Universidad de Lima)Cárdenas Salas, Daniel Enrique (Faculty of Engineering and Architecture, Universidad de Lima)Vergara Olivera, Mónica Alejandra (Faculty of Engineering and Architecture, Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17770/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12724/17770oai:repositorio.ulima.edu.pe:20.500.12724/177702024-11-08 16:16:02.905Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.10263 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).