Dataset of manually classified images obtained from a construction site

Descripción del Articulo

A manually classified dataset of images obtained by four static cameras located around a construction site is presented. Eight object classes, typically found in a construction environment, were considered. The dataset consists of 1046 images selected from video footage by a frame extraction algorit...

Descripción completa

Detalles Bibliográficos
Autores: Del Savio, Alexandre Almeida, Luna Torres, Ana Felícita, Cárdenas Salas, Daniel Enrique, Vergara Olivera, Mónica Alejandra, Urday Ibarra, Gianella Tania
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17770
Enlace del recurso:https://hdl.handle.net/20.500.12724/17770
https://doi.org/10.1016/j.dib.2022.108042
Nivel de acceso:acceso abierto
Materia:Building
Neural networks (Computer science)
Pattern perception
Image processing
Construcción
Redes neuronales (Informática)
Reconocimiento de formas
Proceso de imágenes
https://purl.org/pe-repo/ocde/ford#2.01.03
Descripción
Sumario:A manually classified dataset of images obtained by four static cameras located around a construction site is presented. Eight object classes, typically found in a construction environment, were considered. The dataset consists of 1046 images selected from video footage by a frame extraction algorithm and txt files containing the objects' class and coordinates information. These data can be used to develop computer vision techniques in the engineering and construction fields.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).