Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
Descripción del Articulo
This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/23193 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/23193 https://doi.org/10.1016/j.dib.2025.111516 |
Nivel de acceso: | acceso abierto |
Materia: | Pendiente |
id |
RULI_11da4108d638a0525ec1d19fca24e20e |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/23193 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
spelling |
Del Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaCárdenas Salas, Daniel EnriqueVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella TaniaDel Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)2025-09-09T21:26:35Z2025-09-09T21:26:35Z20252352-3409https://hdl.handle.net/20.500.12724/23193Data Brief121541816https://doi.org/10.1016/j.dib.2025.1115162-s2.0-105001431339This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The compilation was done to support the developing and validation computer vision and AI models for construction site monitoring. This dataset addresses the challenges of finding personnel in different poses within complex construction environments. The resource will enhance construction site safety monitoring and personnel activity analysis by allowing more precise neural network training. The dataset is stored in a public repository, making it openly accessible for academic and industrial purposes regarding computer vision, civil engineering, and workplace safety.htmlengElsevierGBurn:issn: 2352-3409info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/PendientePendienteManually classified dataset of leaning and standing personnel images for construction site monitoring and neural network traininginfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23193oai:repositorio.ulima.edu.pe:20.500.12724/231932025-09-16 12:31:04.365Repositorio Universidad de Limarepositorio@ulima.edu.pe |
dc.title.none.fl_str_mv |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
title |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
spellingShingle |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training Del Savio, Alexandre Almeida Pendiente Pendiente |
title_short |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
title_full |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
title_fullStr |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
title_full_unstemmed |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
title_sort |
Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training |
author |
Del Savio, Alexandre Almeida |
author_facet |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author_role |
author |
author2 |
Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author2_role |
author author author author |
dc.contributor.other.none.fl_str_mv |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Vergara Olivera, Mónica Alejandra |
dc.contributor.student.none.fl_str_mv |
Urday Ibarra, Gianella Tania (Ingeniería de Sistemas) |
dc.contributor.author.fl_str_mv |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
dc.subject.none.fl_str_mv |
Pendiente |
topic |
Pendiente Pendiente |
dc.subject.ocde.none.fl_str_mv |
Pendiente |
description |
This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The compilation was done to support the developing and validation computer vision and AI models for construction site monitoring. This dataset addresses the challenges of finding personnel in different poses within complex construction environments. The resource will enhance construction site safety monitoring and personnel activity analysis by allowing more precise neural network training. The dataset is stored in a public repository, making it openly accessible for academic and industrial purposes regarding computer vision, civil engineering, and workplace safety. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-09-09T21:26:35Z |
dc.date.available.none.fl_str_mv |
2025-09-09T21:26:35Z |
dc.date.issued.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo (Scopus) |
format |
article |
dc.identifier.issn.none.fl_str_mv |
2352-3409 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/23193 |
dc.identifier.journal.none.fl_str_mv |
Data Brief |
dc.identifier.isni.none.fl_str_mv |
121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.dib.2025.111516 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-105001431339 |
identifier_str_mv |
2352-3409 Data Brief 121541816 2-s2.0-105001431339 |
url |
https://hdl.handle.net/20.500.12724/23193 https://doi.org/10.1016/j.dib.2025.111516 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2352-3409 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
html |
dc.publisher.none.fl_str_mv |
Elsevier |
dc.publisher.country.none.fl_str_mv |
GB |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844710007048765440 |
score |
13.802008 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).