Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training

Descripción del Articulo

This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The...

Descripción completa

Detalles Bibliográficos
Autores: Del Savio, Alexandre Almeida, Luna Torres, Ana Felícita, Cárdenas Salas, Daniel Enrique, Vergara Olivera, Mónica Alejandra, Urday Ibarra, Gianella Tania
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/23193
Enlace del recurso:https://hdl.handle.net/20.500.12724/23193
https://doi.org/10.1016/j.dib.2025.111516
Nivel de acceso:acceso abierto
Materia:Pendiente
id RULI_11da4108d638a0525ec1d19fca24e20e
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/23193
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Del Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaCárdenas Salas, Daniel EnriqueVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella TaniaDel Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)2025-09-09T21:26:35Z2025-09-09T21:26:35Z20252352-3409https://hdl.handle.net/20.500.12724/23193Data Brief121541816https://doi.org/10.1016/j.dib.2025.1115162-s2.0-105001431339This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The compilation was done to support the developing and validation computer vision and AI models for construction site monitoring. This dataset addresses the challenges of finding personnel in different poses within complex construction environments. The resource will enhance construction site safety monitoring and personnel activity analysis by allowing more precise neural network training. The dataset is stored in a public repository, making it openly accessible for academic and industrial purposes regarding computer vision, civil engineering, and workplace safety.htmlengElsevierGBurn:issn: 2352-3409info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/PendientePendienteManually classified dataset of leaning and standing personnel images for construction site monitoring and neural network traininginfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23193oai:repositorio.ulima.edu.pe:20.500.12724/231932025-09-16 12:31:04.365Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.none.fl_str_mv Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
title Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
spellingShingle Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
Del Savio, Alexandre Almeida
Pendiente
Pendiente
title_short Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
title_full Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
title_fullStr Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
title_full_unstemmed Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
title_sort Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training
author Del Savio, Alexandre Almeida
author_facet Del Savio, Alexandre Almeida
Luna Torres, Ana Felícita
Cárdenas Salas, Daniel Enrique
Vergara Olivera, Mónica Alejandra
Urday Ibarra, Gianella Tania
author_role author
author2 Luna Torres, Ana Felícita
Cárdenas Salas, Daniel Enrique
Vergara Olivera, Mónica Alejandra
Urday Ibarra, Gianella Tania
author2_role author
author
author
author
dc.contributor.other.none.fl_str_mv Del Savio, Alexandre Almeida
Luna Torres, Ana Felícita
Vergara Olivera, Mónica Alejandra
dc.contributor.student.none.fl_str_mv Urday Ibarra, Gianella Tania (Ingeniería de Sistemas)
dc.contributor.author.fl_str_mv Del Savio, Alexandre Almeida
Luna Torres, Ana Felícita
Cárdenas Salas, Daniel Enrique
Vergara Olivera, Mónica Alejandra
Urday Ibarra, Gianella Tania
dc.subject.none.fl_str_mv Pendiente
topic Pendiente
Pendiente
dc.subject.ocde.none.fl_str_mv Pendiente
description This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The compilation was done to support the developing and validation computer vision and AI models for construction site monitoring. This dataset addresses the challenges of finding personnel in different poses within complex construction environments. The resource will enhance construction site safety monitoring and personnel activity analysis by allowing more precise neural network training. The dataset is stored in a public repository, making it openly accessible for academic and industrial purposes regarding computer vision, civil engineering, and workplace safety.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-09-09T21:26:35Z
dc.date.available.none.fl_str_mv 2025-09-09T21:26:35Z
dc.date.issued.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo (Scopus)
format article
dc.identifier.issn.none.fl_str_mv 2352-3409
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/23193
dc.identifier.journal.none.fl_str_mv Data Brief
dc.identifier.isni.none.fl_str_mv 121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.dib.2025.111516
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-105001431339
identifier_str_mv 2352-3409
Data Brief
121541816
2-s2.0-105001431339
url https://hdl.handle.net/20.500.12724/23193
https://doi.org/10.1016/j.dib.2025.111516
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2352-3409
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv html
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv GB
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844710007048765440
score 13.802008
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).