Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
Descripción del Articulo
The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et a...
Autores: | , , , |
---|---|
Formato: | documento de trabajo |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/182549 |
Enlace del recurso: | https://repositorio.pucp.edu.pe/index/handle/123456789/182549 http://doi.org/10.18800/2079-8474.0502 |
Nivel de acceso: | acceso abierto |
Materia: | Mercado Bursátiles de América Latina Volatilidad Estocástica en Media Efecto Feed-Back Modelos Espacio Estado No Lineales Hamiltonian Monte Carlo Hidden Markov Models Riemannian Manifold Hamiltonian Monte Carlo http://purl.org/pe-repo/ocde/ford#5.02.00 |
id |
RPUC_bfaaaf18d3fa556e25d3ac62d5545c8a |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/182549 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
dc.title.es_ES.fl_str_mv |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
title |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
spellingShingle |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets Abanto-Valle, Carlos A. Mercado Bursátiles de América Latina Volatilidad Estocástica en Media Efecto Feed-Back Modelos Espacio Estado No Lineales Hamiltonian Monte Carlo Hidden Markov Models Riemannian Manifold Hamiltonian Monte Carlo http://purl.org/pe-repo/ocde/ford#5.02.00 |
title_short |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
title_full |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
title_fullStr |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
title_full_unstemmed |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
title_sort |
Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets |
author |
Abanto-Valle, Carlos A. |
author_facet |
Abanto-Valle, Carlos A. Rodríguez, Gabriel Garrafa-Aragón, Hernán Castro Cepero, Luis M. |
author_role |
author |
author2 |
Rodríguez, Gabriel Garrafa-Aragón, Hernán Castro Cepero, Luis M. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Abanto-Valle, Carlos A. Rodríguez, Gabriel Garrafa-Aragón, Hernán Castro Cepero, Luis M. |
dc.subject.es_ES.fl_str_mv |
Mercado Bursátiles de América Latina Volatilidad Estocástica en Media Efecto Feed-Back Modelos Espacio Estado No Lineales |
topic |
Mercado Bursátiles de América Latina Volatilidad Estocástica en Media Efecto Feed-Back Modelos Espacio Estado No Lineales Hamiltonian Monte Carlo Hidden Markov Models Riemannian Manifold Hamiltonian Monte Carlo http://purl.org/pe-repo/ocde/ford#5.02.00 |
dc.subject.en_US.fl_str_mv |
Hamiltonian Monte Carlo Hidden Markov Models Riemannian Manifold Hamiltonian Monte Carlo |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#5.02.00 |
description |
The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is exact and opposite to the finding of Koopman and Uspensky (2002). We compare our methodology with the Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021). |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-24T20:32:52Z |
dc.date.available.none.fl_str_mv |
2021-11-24T20:32:52Z |
dc.date.issued.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.other.none.fl_str_mv |
Documento de trabajo |
format |
workingPaper |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.pucp.edu.pe/index/handle/123456789/182549 |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.18800/2079-8474.0502 |
url |
https://repositorio.pucp.edu.pe/index/handle/123456789/182549 http://doi.org/10.18800/2079-8474.0502 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2079-8474 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú. Departamento de Economía |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/9affb933-9c32-48f5-bc2b-61e1aca978d8/download https://repositorio.pucp.edu.pe/bitstreams/a308d450-ed98-4c2b-9bfb-8171eaef6169/download https://repositorio.pucp.edu.pe/bitstreams/aed36e78-c126-4a1e-9a03-16dd498f87e2/download https://repositorio.pucp.edu.pe/bitstreams/75b8e14f-4c82-4799-a0fb-ebad7ad3129e/download https://repositorio.pucp.edu.pe/bitstreams/3aa96d8a-a633-4cf8-bbdb-4b921c6e9fd6/download |
bitstream.checksum.fl_str_mv |
25197729199360b95e5610e810e1c04a 3655808e5dd46167956d6870b0f43800 11e7ce42686895e65df1b3ec43c67da0 8a4605be74aa9ea9d79846c1fba20a33 06b3d8e575f066714a4e80cfdc2559e6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638356927578112 |
spelling |
Abanto-Valle, Carlos A.Rodríguez, GabrielGarrafa-Aragón, HernánCastro Cepero, Luis M.2021-11-24T20:32:52Z2021-11-24T20:32:52Z2021-10https://repositorio.pucp.edu.pe/index/handle/123456789/182549http://doi.org/10.18800/2079-8474.0502The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is exact and opposite to the finding of Koopman and Uspensky (2002). We compare our methodology with the Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021).engPontificia Universidad Católica del Perú. Departamento de EconomíaPEurn:issn:2079-8474info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Mercado Bursátiles de América LatinaVolatilidad Estocástica en MediaEfecto Feed-BackModelos Espacio Estado No LinealesHamiltonian Monte CarloHidden Markov ModelsRiemannian Manifold Hamiltonian Monte Carlohttp://purl.org/pe-repo/ocde/ford#5.02.00Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American marketsinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALDDD502.pdfDDD502.pdfTexto completoapplication/pdf2289757https://repositorio.pucp.edu.pe/bitstreams/9affb933-9c32-48f5-bc2b-61e1aca978d8/download25197729199360b95e5610e810e1c04aMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.pucp.edu.pe/bitstreams/a308d450-ed98-4c2b-9bfb-8171eaef6169/download3655808e5dd46167956d6870b0f43800MD52falseAnonymousREADTHUMBNAILDDD502.pdf.jpgDDD502.pdf.jpgIM Thumbnailimage/jpeg42008https://repositorio.pucp.edu.pe/bitstreams/aed36e78-c126-4a1e-9a03-16dd498f87e2/download11e7ce42686895e65df1b3ec43c67da0MD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.pucp.edu.pe/bitstreams/75b8e14f-4c82-4799-a0fb-ebad7ad3129e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTDDD502.pdf.txtDDD502.pdf.txtExtracted texttext/plain67138https://repositorio.pucp.edu.pe/bitstreams/3aa96d8a-a633-4cf8-bbdb-4b921c6e9fd6/download06b3d8e575f066714a4e80cfdc2559e6MD55falseAnonymousREAD20.500.14657/182549oai:repositorio.pucp.edu.pe:20.500.14657/1825492025-05-22 10:53:37.325http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).