Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets

Descripción del Articulo

The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et a...

Descripción completa

Detalles Bibliográficos
Autores: Abanto-Valle, Carlos A., Rodríguez, Gabriel, Garrafa-Aragón, Hernán, Castro Cepero, Luis M.
Formato: documento de trabajo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/182549
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/182549
http://doi.org/10.18800/2079-8474.0502
Nivel de acceso:acceso abierto
Materia:Mercado Bursátiles de América Latina
Volatilidad Estocástica en Media
Efecto Feed-Back
Modelos Espacio Estado No Lineales
Hamiltonian Monte Carlo
Hidden Markov Models
Riemannian Manifold Hamiltonian Monte Carlo
http://purl.org/pe-repo/ocde/ford#5.02.00
id RPUC_bfaaaf18d3fa556e25d3ac62d5545c8a
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/182549
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
title Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
spellingShingle Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
Abanto-Valle, Carlos A.
Mercado Bursátiles de América Latina
Volatilidad Estocástica en Media
Efecto Feed-Back
Modelos Espacio Estado No Lineales
Hamiltonian Monte Carlo
Hidden Markov Models
Riemannian Manifold Hamiltonian Monte Carlo
http://purl.org/pe-repo/ocde/ford#5.02.00
title_short Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
title_full Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
title_fullStr Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
title_full_unstemmed Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
title_sort Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets
author Abanto-Valle, Carlos A.
author_facet Abanto-Valle, Carlos A.
Rodríguez, Gabriel
Garrafa-Aragón, Hernán
Castro Cepero, Luis M.
author_role author
author2 Rodríguez, Gabriel
Garrafa-Aragón, Hernán
Castro Cepero, Luis M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Abanto-Valle, Carlos A.
Rodríguez, Gabriel
Garrafa-Aragón, Hernán
Castro Cepero, Luis M.
dc.subject.es_ES.fl_str_mv Mercado Bursátiles de América Latina
Volatilidad Estocástica en Media
Efecto Feed-Back
Modelos Espacio Estado No Lineales
topic Mercado Bursátiles de América Latina
Volatilidad Estocástica en Media
Efecto Feed-Back
Modelos Espacio Estado No Lineales
Hamiltonian Monte Carlo
Hidden Markov Models
Riemannian Manifold Hamiltonian Monte Carlo
http://purl.org/pe-repo/ocde/ford#5.02.00
dc.subject.en_US.fl_str_mv Hamiltonian Monte Carlo
Hidden Markov Models
Riemannian Manifold Hamiltonian Monte Carlo
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#5.02.00
description The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is exact and opposite to the finding of Koopman and Uspensky (2002). We compare our methodology with the Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021).
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-24T20:32:52Z
dc.date.available.none.fl_str_mv 2021-11-24T20:32:52Z
dc.date.issued.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.other.none.fl_str_mv Documento de trabajo
format workingPaper
dc.identifier.uri.none.fl_str_mv https://repositorio.pucp.edu.pe/index/handle/123456789/182549
dc.identifier.doi.none.fl_str_mv http://doi.org/10.18800/2079-8474.0502
url https://repositorio.pucp.edu.pe/index/handle/123456789/182549
http://doi.org/10.18800/2079-8474.0502
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2079-8474
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú. Departamento de Economía
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/9affb933-9c32-48f5-bc2b-61e1aca978d8/download
https://repositorio.pucp.edu.pe/bitstreams/a308d450-ed98-4c2b-9bfb-8171eaef6169/download
https://repositorio.pucp.edu.pe/bitstreams/aed36e78-c126-4a1e-9a03-16dd498f87e2/download
https://repositorio.pucp.edu.pe/bitstreams/75b8e14f-4c82-4799-a0fb-ebad7ad3129e/download
https://repositorio.pucp.edu.pe/bitstreams/3aa96d8a-a633-4cf8-bbdb-4b921c6e9fd6/download
bitstream.checksum.fl_str_mv 25197729199360b95e5610e810e1c04a
3655808e5dd46167956d6870b0f43800
11e7ce42686895e65df1b3ec43c67da0
8a4605be74aa9ea9d79846c1fba20a33
06b3d8e575f066714a4e80cfdc2559e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638356927578112
spelling Abanto-Valle, Carlos A.Rodríguez, GabrielGarrafa-Aragón, HernánCastro Cepero, Luis M.2021-11-24T20:32:52Z2021-11-24T20:32:52Z2021-10https://repositorio.pucp.edu.pe/index/handle/123456789/182549http://doi.org/10.18800/2079-8474.0502The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is exact and opposite to the finding of Koopman and Uspensky (2002). We compare our methodology with the Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021).engPontificia Universidad Católica del Perú. Departamento de EconomíaPEurn:issn:2079-8474info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Mercado Bursátiles de América LatinaVolatilidad Estocástica en MediaEfecto Feed-BackModelos Espacio Estado No LinealesHamiltonian Monte CarloHidden Markov ModelsRiemannian Manifold Hamiltonian Monte Carlohttp://purl.org/pe-repo/ocde/ford#5.02.00Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American marketsinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALDDD502.pdfDDD502.pdfTexto completoapplication/pdf2289757https://repositorio.pucp.edu.pe/bitstreams/9affb933-9c32-48f5-bc2b-61e1aca978d8/download25197729199360b95e5610e810e1c04aMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.pucp.edu.pe/bitstreams/a308d450-ed98-4c2b-9bfb-8171eaef6169/download3655808e5dd46167956d6870b0f43800MD52falseAnonymousREADTHUMBNAILDDD502.pdf.jpgDDD502.pdf.jpgIM Thumbnailimage/jpeg42008https://repositorio.pucp.edu.pe/bitstreams/aed36e78-c126-4a1e-9a03-16dd498f87e2/download11e7ce42686895e65df1b3ec43c67da0MD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.pucp.edu.pe/bitstreams/75b8e14f-4c82-4799-a0fb-ebad7ad3129e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTDDD502.pdf.txtDDD502.pdf.txtExtracted texttext/plain67138https://repositorio.pucp.edu.pe/bitstreams/3aa96d8a-a633-4cf8-bbdb-4b921c6e9fd6/download06b3d8e575f066714a4e80cfdc2559e6MD55falseAnonymousREAD20.500.14657/182549oai:repositorio.pucp.edu.pe:20.500.14657/1825492025-05-22 10:53:37.325http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).