Un modelo estoclástico de volatilidad con sesgo GH en la distribución T de Student.

Descripción del Articulo

Este trabajo presenta una aplicación empírica de un modelo de volatilidad estocástica (SV) aplicado a los retornos bursátiles diarios de un grupo de países de América Latina (Argentina, Brasil, Chile, México y Perú) para el período 1996:01-2013:12. Se estima un modelo SV que incorpora tanto los efec...

Descripción completa

Detalles Bibliográficos
Autores: Lengua Lafosse, Patricia, Bayes, Cristian, Rodríguez, Gabriel
Formato: documento de trabajo
Fecha de Publicación:2015
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/52502
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/52502
Nivel de acceso:acceso abierto
Materia:América Latina
Cadenas de Markov de Monte Carlo
Distribución Hiperbólica Generalizada Sesgada t-Student
Estimación Bayesiana
Retornos Bursátiles
Volatilidad Estocástica
http://purl.org/pe-repo/ocde/ford#5.02.00
Descripción
Sumario:Este trabajo presenta una aplicación empírica de un modelo de volatilidad estocástica (SV) aplicado a los retornos bursátiles diarios de un grupo de países de América Latina (Argentina, Brasil, Chile, México y Perú) para el período 1996:01-2013:12. Se estima un modelo SV que incorpora tanto los efectos de apalancamiento, sesgo en la distribución y colas pesadas usando una distribución t-Student Generalizada Hiperbólica usando el algoritmo Bayesiano propuesto por Nakajima and Omori (2012). Los resultados del modelo se comparan con modelos de volatilidad estocástica con distribución t-Student simétrica mediante el uso del logaritmo de las verosimilitudes marginales. Asimismo un análisis de sensibilidad a las priors es proporcionado. Los resultados sugieren que hay efectos de apalancamiento en todas las series de retornos consideradas aunque no hay evidencia concluyente para el caso de Perú. De otro lado, perturbaciones sesgadas con colas pesadas son confirmadas para Argentina, mientras que la existencia de colas pesadas es obtenida para México, Brasil y Chile y perturbaciones Normales simétricas en el caso del Perú. En general, encontramos que la distribución GH Skew t-Student es adecuada en la modelación de los retornos diarios de Perú, Argentina y Brasil en comparación con los modelos tradicionales con distribución simétrica t-Student.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).