Approximate bayesian estimation of stochastic volatility in mean models using hidden Markov models: empirical evidence from stock Latin American markets

Descripción del Articulo

The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et a...

Descripción completa

Detalles Bibliográficos
Autores: Abanto-Valle, Carlos A., Rodríguez, Gabriel, Garrafa-Aragón, Hernán, Castro Cepero, Luis M.
Formato: documento de trabajo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/182549
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/182549
http://doi.org/10.18800/2079-8474.0502
Nivel de acceso:acceso abierto
Materia:Mercado Bursátiles de América Latina
Volatilidad Estocástica en Media
Efecto Feed-Back
Modelos Espacio Estado No Lineales
Hamiltonian Monte Carlo
Hidden Markov Models
Riemannian Manifold Hamiltonian Monte Carlo
http://purl.org/pe-repo/ocde/ford#5.02.00
Descripción
Sumario:The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is exact and opposite to the finding of Koopman and Uspensky (2002). We compare our methodology with the Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (2021).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).