Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts

Descripción del Articulo

We use the approach of Qu and Perron (2013) for the modeling and inference of volatility of a set of commodity prices in the presence of level shifts of unknown timing, magnitude and frequency. The model has two features: (i) it is a stochastic volatility model comprising both a level shift and a sh...

Descripción completa

Detalles Bibliográficos
Autores: Alvaro, Dennis, Guillén, Ángel, Rodríguez, Gabriel
Formato: documento de trabajo
Fecha de Publicación:2016
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/189159
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/189159
Nivel de acceso:acceso abierto
Materia:Volatilidad Estocástica
Modelos en Forma Espacio-Estado
Inferencia Bayesiana
Cambio Estructural
Precios de Commodities
Stochastic Volatility
State-Space Models
Bayesian Inference
Structural Change
Commodity Prices
https://purl.org/pe-repo/ocde/ford#5.02.01
id RPUC_4f84aa3fc3c3499c0f69f06c13b1d790
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/189159
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
title Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
spellingShingle Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
Alvaro, Dennis
Volatilidad Estocástica
Modelos en Forma Espacio-Estado
Inferencia Bayesiana
Cambio Estructural
Precios de Commodities
Stochastic Volatility
State-Space Models
Bayesian Inference
Structural Change
Commodity Prices
https://purl.org/pe-repo/ocde/ford#5.02.01
title_short Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
title_full Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
title_fullStr Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
title_full_unstemmed Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
title_sort Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts
author Alvaro, Dennis
author_facet Alvaro, Dennis
Guillén, Ángel
Rodríguez, Gabriel
author_role author
author2 Guillén, Ángel
Rodríguez, Gabriel
author2_role author
author
dc.contributor.author.fl_str_mv Alvaro, Dennis
Guillén, Ángel
Rodríguez, Gabriel
dc.subject.es_ES.fl_str_mv Volatilidad Estocástica
Modelos en Forma Espacio-Estado
Inferencia Bayesiana
Cambio Estructural
Precios de Commodities
topic Volatilidad Estocástica
Modelos en Forma Espacio-Estado
Inferencia Bayesiana
Cambio Estructural
Precios de Commodities
Stochastic Volatility
State-Space Models
Bayesian Inference
Structural Change
Commodity Prices
https://purl.org/pe-repo/ocde/ford#5.02.01
dc.subject.en_US.fl_str_mv Stochastic Volatility
State-Space Models
Bayesian Inference
Structural Change
Commodity Prices
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.01
description We use the approach of Qu and Perron (2013) for the modeling and inference of volatility of a set of commodity prices in the presence of level shifts of unknown timing, magnitude and frequency. The model has two features: (i) it is a stochastic volatility model comprising both a level shift and a short-memory process where the .rst component is modeled as a compounded binomial process while the second one is an AR(1) process; (ii) the model is estimated using Bayesian techniques in order to obtain posterior distributions of the parameters and the two latent components. We use six commodity series: agriculture, livestock, gold, oil, industrial metals and a general commodity index. All series cover the period from January 1983 until December 2013 in daily frequency. The results show that although the occurrence of a level shift is rare (about once every 1.5 or 1.8 years), this component clearly contributes most to the variation in the volatility. The half-life of a typical shock from the AR(1) component is short, on average 13 days. Furthermore, isolating the level shift component from the overall volatility indicates a stronger relationship between volatility and Peruvian business cycle movements.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2023-02-13T15:11:07Z
dc.date.available.none.fl_str_mv 2023-02-13T15:11:07Z
dc.date.issued.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.other.none.fl_str_mv Documento de trabajo
format workingPaper
dc.identifier.issn.none.fl_str_mv urn:issn:2079-8474
dc.identifier.uri.none.fl_str_mv https://repositorio.pucp.edu.pe/index/handle/123456789/189159
identifier_str_mv urn:issn:2079-8474
url https://repositorio.pucp.edu.pe/index/handle/123456789/189159
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartofseries.es_ES.fl_str_mv Documento de Trabajo;414
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú. Departamento de Economía
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/5a6ff405-d2b8-46d1-b139-2477cf6af54a/download
https://repositorio.pucp.edu.pe/bitstreams/4470df40-32ef-43ca-adc0-894f520bebd4/download
https://repositorio.pucp.edu.pe/bitstreams/f5f98954-cf40-4fed-b83c-b6c91457a9f5/download
bitstream.checksum.fl_str_mv 32b840cbcc3e14a4e9865f1645f63a04
fc7defe409704524b116ac765f197248
553359100679b7b8644b169a638eef54
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639002873462784
spelling Alvaro, DennisGuillén, ÁngelRodríguez, Gabriel2023-02-13T15:11:07Z2023-02-13T15:11:07Z2016-03urn:issn:2079-8474https://repositorio.pucp.edu.pe/index/handle/123456789/189159We use the approach of Qu and Perron (2013) for the modeling and inference of volatility of a set of commodity prices in the presence of level shifts of unknown timing, magnitude and frequency. The model has two features: (i) it is a stochastic volatility model comprising both a level shift and a short-memory process where the .rst component is modeled as a compounded binomial process while the second one is an AR(1) process; (ii) the model is estimated using Bayesian techniques in order to obtain posterior distributions of the parameters and the two latent components. We use six commodity series: agriculture, livestock, gold, oil, industrial metals and a general commodity index. All series cover the period from January 1983 until December 2013 in daily frequency. The results show that although the occurrence of a level shift is rare (about once every 1.5 or 1.8 years), this component clearly contributes most to the variation in the volatility. The half-life of a typical shock from the AR(1) component is short, on average 13 days. Furthermore, isolating the level shift component from the overall volatility indicates a stronger relationship between volatility and Peruvian business cycle movements.En este documento usamos el enfoque de Qu y Perron (2013) para la modelación, estimación e in- ferencia acerca de la volatilidad de un grupo de precios de commodities en la presencia de cambios de nivel de fecha, magnitud y frecuencia desconocidas. El modelo tiene dos rasgos: (i) es un modelo de volatilidad estocástica que comprende tanto un proceso de cambios de nivel como un proceso de corta memoria. El primer componente es modelado como un proceso mixto gobernado por una variable Binomial mientras que el segundo proceso es modelado como un proceso AR(1); (ii) el modelo se estima utilizando técnicas Bayesianas con el .n de obtener distribuciones posteriores de los parámetros y de los dos componentes latentes. Utilizamos seis series de commodities: agricul- tura, ganadería, oro, petróleo, metales industriales y un índice de commodities en general. Todas las series cubren el período de Enero de 1983 hasta Diciembre de 2013 con frecuencia diaria. Los resultados muestran que a pesar que la ocurrencia de un cambio de nivel es rara (aproximadamente una vez cada 1.5 o 1.8 años), este componente contribuye claramente más a la variación en la volatilidad. La vida media de un choque típico de la especi.cación AR(1) es corta, en un promedio de 13 días. Además, aislando el componente de cambio de nivel de la volatilidad global indica una relación más fuerte entre los movimientos de la volatilidad y el ciclo económico peruano.engPontificia Universidad Católica del Perú. Departamento de EconomíaPEDocumento de Trabajo;414info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Volatilidad EstocásticaModelos en Forma Espacio-EstadoInferencia BayesianaCambio EstructuralPrecios de CommoditiesStochastic VolatilityState-Space ModelsBayesian InferenceStructural ChangeCommodity Priceshttps://purl.org/pe-repo/ocde/ford#5.02.01Modelling the volatility of commodities prices using a stochastic volatility model with random level shiftsinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALDDD414.pdfDDD414.pdfTexto completoapplication/pdf2108107https://repositorio.pucp.edu.pe/bitstreams/5a6ff405-d2b8-46d1-b139-2477cf6af54a/download32b840cbcc3e14a4e9865f1645f63a04MD51trueAnonymousREADTHUMBNAILDDD414.pdf.jpgDDD414.pdf.jpgIM Thumbnailimage/jpeg27163https://repositorio.pucp.edu.pe/bitstreams/4470df40-32ef-43ca-adc0-894f520bebd4/downloadfc7defe409704524b116ac765f197248MD52falseAnonymousREADTEXTDDD414.pdf.txtDDD414.pdf.txtExtracted texttext/plain98666https://repositorio.pucp.edu.pe/bitstreams/f5f98954-cf40-4fed-b83c-b6c91457a9f5/download553359100679b7b8644b169a638eef54MD53falseAnonymousREAD20.500.14657/189159oai:repositorio.pucp.edu.pe:20.500.14657/1891592025-05-22 10:53:42.812http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).