Cota de Klingenberg en la extensión del teorema de la esfera a variedades riemannianas

Descripción del Articulo

La investigación planteó la extensión del teorema de la esfera a variedades riemannianas de dimensión n>3. Fundamentalmente esta extensión se debe a Berger y Klingenberg, siendo este último quien desarrolló la estimación del radio de inyectividad para una variedad cuya característica es poseer cu...

Descripción completa

Detalles Bibliográficos
Autor: Quispe Machaca, Elizabeth
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/13829
Enlace del recurso:http://repositorio.unap.edu.pe/handle/20.500.14082/13829
Nivel de acceso:acceso abierto
Materia:Cota de Klingenberg
Homeomorfismos
Radio de inyectividad
Teorema de la esfera
Variedades riemannianas
Descripción
Sumario:La investigación planteó la extensión del teorema de la esfera a variedades riemannianas de dimensión n>3. Fundamentalmente esta extensión se debe a Berger y Klingenberg, siendo este último quien desarrolló la estimación del radio de inyectividad para una variedad cuya característica es poseer curvatura seccional positiva y unitaria. El objetivo principal fue demostrar que con las condiciones de curvatura gaussiana positiva una superficie conexa y compacta no puede ser otra superficie más que la esfera, para lo cual se busca establecer un homeomorfismo entre una variedad M compacta y simplemente conexa que satisfaga determinadas condiciones sobre la curvatura seccional y la esfera unitaria S^n; dicha condición que se impuso es: trabajar con variedades riemannianas cuya curvatura seccional estén contenidas estrictamente en el intervalo (1/4,1], donde h=1/4 es la cota de Klingenberg. Para ello se estudió los teoremas de estimación de Klingenberg con la finalidad de encontrar una cota óptima para el radio de inyectividad y con ello proporcionarle una estructura a la variedad para construir el homeomorfismo.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).