“Geodésicas en variedades riemannianas y sus propiedades minimizantes“

Descripción del Articulo

En el presente trabajo se realiza un estudio de la Propiedad minimizante de las geodésicas en una variedad riemanniana, en el que se presenta una demostración de tipo deductivo. En ese sentido, el objetivo de nuestra investigación es realizar una demostración de manera interpretativa de dicha propie...

Descripción completa

Detalles Bibliográficos
Autor: Carrillo Lara, Flor Isabel
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/4287
Enlace del recurso:https://hdl.handle.net/20.500.12952/4287
Nivel de acceso:acceso abierto
Materia:Geodésicas
Propiedad Minimizante
Geometría Diferencial
Variedad Riemanniana
Descripción
Sumario:En el presente trabajo se realiza un estudio de la Propiedad minimizante de las geodésicas en una variedad riemanniana, en el que se presenta una demostración de tipo deductivo. En ese sentido, el objetivo de nuestra investigación es realizar una demostración de manera interpretativa de dicha propiedad ya que es un tema complejo y abstracto. Con respecto a la metodología este trabajo es de tipo cualitativo. Además, presentamos los siguientes resultados: definición de una geodésica en 3, la definición del sistema de ecuaciones diferenciales para las geodésicas en variedades diferenciales y la demostración de la propiedad minimizante de las geodésicas en una variedad riemanniana. Finalmente, concluimos que se demuestra de manera interpretativa que la curva diferenciable () es la longitud mínima sobre una variedad riemanniana.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).