Extensión del método subgradiente para funciones cuasi-convexas en variedades Riemannianas

Descripción del Articulo

El presente trabajo de investigación tiene como finalidad extender el método subgradiente para problemas de optimización donde la función objetivo es cuasiconvexa bajo el contexto de variedades Riemannianas con curvatura seccional limitada superiormente por una constante no negativa. Se aborda en pa...

Descripción completa

Detalles Bibliográficos
Autor: Rios Cortegana, Jhon Erick
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/27929
Enlace del recurso:https://hdl.handle.net/20.500.12672/27929
Nivel de acceso:acceso abierto
Materia:Variedades riemannianas
Método subgradiente
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:El presente trabajo de investigación tiene como finalidad extender el método subgradiente para problemas de optimización donde la función objetivo es cuasiconvexa bajo el contexto de variedades Riemannianas con curvatura seccional limitada superiormente por una constante no negativa. Se aborda en particular dos clases de variedades, el semiespacio hiperbólico de Poincaré y el espacio de las matrices simétricas definidas positivas. Se presenta una demostración de convergencia del algoritmo subgradiente usando el subdiferenial de Greemberg-Pierskalla y ejemplos numéricos para las dos clases de variedades comparando sus resultados con los algoritmos en espacios Euclidianos. Los resultados numéricos obtenidos nos permiten concluir que la introducción de algoritmos Riemannianos son ventajosos para algunas aplicaciones comparados con los algoritmos Euclidianos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).