TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS

Descripción del Articulo

The purpose of the study was to describe the need for decision-making from the conceptualized training between Statistics and Data Science. Four elements are key in science: theory, data, methodology, and problem, because if the data is part of science then it seems wrong that there is a DataScience...

Descripción completa

Detalles Bibliográficos
Autores: Argota-Pérez, George, Argota-Pérez, Yadira, Álvarez-Becerra, Rina María, Reyes-Diaz, María Gilda
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Ricardo Palma
Repositorio:Revistas - Universidad Ricardo Palma
Lenguaje:español
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/4841
Enlace del recurso:http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841
Nivel de acceso:acceso abierto
id REVURP_ba4823d333c5ec61cea44d2212fa4af2
oai_identifier_str oai:oai.revistas.urp.edu.pe:article/4841
network_acronym_str REVURP
network_name_str Revistas - Universidad Ricardo Palma
repository_id_str
dc.title.none.fl_str_mv TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
DECISIÓN FORMATIVA COMO ELEMENTO DE LA INVESTIGACIÓN CIENTÍFICA DESDE LA CONCEPTUALIZACIÓN ESTADÍSTICA Y CIENCIA DE DATOS: LO OBVIO, NO TAN OBVIO
title TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
spellingShingle TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
Argota-Pérez, George
title_short TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
title_full TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
title_fullStr TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
title_full_unstemmed TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
title_sort TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
dc.creator.none.fl_str_mv Argota-Pérez, George
Argota-Pérez, Yadira
Álvarez-Becerra, Rina María
Reyes-Diaz, María Gilda
author Argota-Pérez, George
author_facet Argota-Pérez, George
Argota-Pérez, Yadira
Álvarez-Becerra, Rina María
Reyes-Diaz, María Gilda
author_role author
author2 Argota-Pérez, Yadira
Álvarez-Becerra, Rina María
Reyes-Diaz, María Gilda
author2_role author
author
author
description The purpose of the study was to describe the need for decision-making from the conceptualized training between Statistics and Data Science. Four elements are key in science: theory, data, methodology, and problem, because if the data is part of science then it seems wrong that there is a DataScience since no methodology from Data Science can decide, the “ideal or correct” pattern since there are multiple patterns to be understood. On the other hand, if the statistical programs are incapable of analyzing hundreds of thousands of data (it makes no sense when decisions are recognized from a random probabilistic sample and, on the contrary, not considered makes it impossible to make inferences), then the possibility of representing diversity from Statistics is limited since there is centralization in minimizing the sums of the deviations to the mean square and not understanding the diversity that Data Science performs. It is concluded that Statistics adds to reliability and validity, while Data Science allows the development of methodologies that condition the incorporation of technologies where it is difficult to unmark the barrier between Statistics and Data Science because on some occasions they are indistinct from each other and in other cases an association is shared. Therefore, mastery of data processing from Statistics and machine learning facilitated by Data Science is required for the decision, but there must be training in both fields of study. Keywords: data science – decisions – professional competence – statistics
publishDate 2023
dc.date.none.fl_str_mv 2023-02-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841
10.31381/paideia.v12i1.4841
url http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841
identifier_str_mv 10.31381/paideia.v12i1.4841
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/5819
http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/8248
dc.rights.none.fl_str_mv Derechos de autor 2022 Paideia XXI
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Paideia XXI
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Ricardo Palma
publisher.none.fl_str_mv Universidad Ricardo Palma
dc.source.none.fl_str_mv Paideia XXI; Vol. 12 Núm. 1 (2022): PAIDEIA XXI; 161-167
Paideia XXI; Vol. 12 No. 1 (2022): PAIDEIA XXI; 161-167
2519-5700
2221-7770
10.31381/paideia.v12i1
reponame:Revistas - Universidad Ricardo Palma
instname:Universidad Ricardo Palma
instacron:URP
instname_str Universidad Ricardo Palma
instacron_str URP
institution URP
reponame_str Revistas - Universidad Ricardo Palma
collection Revistas - Universidad Ricardo Palma
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1789625154255454208
spelling TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUSDECISIÓN FORMATIVA COMO ELEMENTO DE LA INVESTIGACIÓN CIENTÍFICA DESDE LA CONCEPTUALIZACIÓN ESTADÍSTICA Y CIENCIA DE DATOS: LO OBVIO, NO TAN OBVIOArgota-Pérez, GeorgeArgota-Pérez, YadiraÁlvarez-Becerra, Rina MaríaReyes-Diaz, María Gilda The purpose of the study was to describe the need for decision-making from the conceptualized training between Statistics and Data Science. Four elements are key in science: theory, data, methodology, and problem, because if the data is part of science then it seems wrong that there is a DataScience since no methodology from Data Science can decide, the “ideal or correct” pattern since there are multiple patterns to be understood. On the other hand, if the statistical programs are incapable of analyzing hundreds of thousands of data (it makes no sense when decisions are recognized from a random probabilistic sample and, on the contrary, not considered makes it impossible to make inferences), then the possibility of representing diversity from Statistics is limited since there is centralization in minimizing the sums of the deviations to the mean square and not understanding the diversity that Data Science performs. It is concluded that Statistics adds to reliability and validity, while Data Science allows the development of methodologies that condition the incorporation of technologies where it is difficult to unmark the barrier between Statistics and Data Science because on some occasions they are indistinct from each other and in other cases an association is shared. Therefore, mastery of data processing from Statistics and machine learning facilitated by Data Science is required for the decision, but there must be training in both fields of study. Keywords: data science – decisions – professional competence – statisticsEl propósito del estudio fue describir la necesidad en la toma de decisiones desde la formación conceptualizada entre la Estadística y Ciencia de Datos. Cuatro elementos son claves en la ciencia: teoría, datos, metodología y problema, por cuanto, si los datos forman parte de la ciencia entonces, parece erróneo que exista una Ciencia de Datos, pues ninguna metodología desde la Ciencia de Datos puede decidir, el patrón “ideal o correcto” dado que existen múltiples patrones a comprenderse. Por su parte, si los programas estadísticos son incapaces de analizar cientos de miles de datos (carece de sentido al reconocerse las decisiones desde una muestra probabilística aleatoria y, por el contrario, no considerarse imposibilita hacer inferencias), entonces la posibilidad de representar la diversidad desde la Estadística es limitada, ya que existe una centralización en minimizar las sumas de las desviaciones al cuadrado medio y no comprender la diversidad que realiza la Ciencia de Datos. Se concluye, que la Estadística suma a la confiabilidad y validez, mientras que la Ciencia de Datos permite el desarrollo de metodologías que condicionan a la incorporación de tecnologías donde resulta difícil desmarcar la barrera entre la Estadística y la Ciencia de Datos, pues en algunas ocasiones son indistintas entre sí y en otros casos se comparte una asociación. Por tanto, el dominio del tratamiento de los datos desde la Estadística y el aprendizaje automático que facilita la Ciencia de Datos se requiere para la decisión, pero debe existir la formación en ambos campos de estudio. Palabras clave: ciencia de datos – competencia profesional – decisiones – estadísticaUniversidad Ricardo Palma2023-02-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.urp.edu.pe/index.php/Paideia/article/view/484110.31381/paideia.v12i1.4841Paideia XXI; Vol. 12 Núm. 1 (2022): PAIDEIA XXI; 161-167Paideia XXI; Vol. 12 No. 1 (2022): PAIDEIA XXI; 161-1672519-57002221-777010.31381/paideia.v12i1reponame:Revistas - Universidad Ricardo Palmainstname:Universidad Ricardo Palmainstacron:URPspahttp://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/5819http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/8248Derechos de autor 2022 Paideia XXIinfo:eu-repo/semantics/openAccessoai:oai.revistas.urp.edu.pe:article/48412023-02-28T17:00:38Z
score 13.897231
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).