TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS
Descripción del Articulo
The purpose of the study was to describe the need for decision-making from the conceptualized training between Statistics and Data Science. Four elements are key in science: theory, data, methodology, and problem, because if the data is part of science then it seems wrong that there is a DataScience...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Ricardo Palma |
| Repositorio: | Revistas - Universidad Ricardo Palma |
| Lenguaje: | español |
| OAI Identifier: | oai:oai.revistas.urp.edu.pe:article/4841 |
| Enlace del recurso: | http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841 |
| Nivel de acceso: | acceso abierto |
| id |
REVURP_ba4823d333c5ec61cea44d2212fa4af2 |
|---|---|
| oai_identifier_str |
oai:oai.revistas.urp.edu.pe:article/4841 |
| network_acronym_str |
REVURP |
| network_name_str |
Revistas - Universidad Ricardo Palma |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS DECISIÓN FORMATIVA COMO ELEMENTO DE LA INVESTIGACIÓN CIENTÍFICA DESDE LA CONCEPTUALIZACIÓN ESTADÍSTICA Y CIENCIA DE DATOS: LO OBVIO, NO TAN OBVIO |
| title |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS |
| spellingShingle |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS Argota-Pérez, George |
| title_short |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS |
| title_full |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS |
| title_fullStr |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS |
| title_full_unstemmed |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS |
| title_sort |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUS |
| dc.creator.none.fl_str_mv |
Argota-Pérez, George Argota-Pérez, Yadira Álvarez-Becerra, Rina María Reyes-Diaz, María Gilda |
| author |
Argota-Pérez, George |
| author_facet |
Argota-Pérez, George Argota-Pérez, Yadira Álvarez-Becerra, Rina María Reyes-Diaz, María Gilda |
| author_role |
author |
| author2 |
Argota-Pérez, Yadira Álvarez-Becerra, Rina María Reyes-Diaz, María Gilda |
| author2_role |
author author author |
| description |
The purpose of the study was to describe the need for decision-making from the conceptualized training between Statistics and Data Science. Four elements are key in science: theory, data, methodology, and problem, because if the data is part of science then it seems wrong that there is a DataScience since no methodology from Data Science can decide, the “ideal or correct” pattern since there are multiple patterns to be understood. On the other hand, if the statistical programs are incapable of analyzing hundreds of thousands of data (it makes no sense when decisions are recognized from a random probabilistic sample and, on the contrary, not considered makes it impossible to make inferences), then the possibility of representing diversity from Statistics is limited since there is centralization in minimizing the sums of the deviations to the mean square and not understanding the diversity that Data Science performs. It is concluded that Statistics adds to reliability and validity, while Data Science allows the development of methodologies that condition the incorporation of technologies where it is difficult to unmark the barrier between Statistics and Data Science because on some occasions they are indistinct from each other and in other cases an association is shared. Therefore, mastery of data processing from Statistics and machine learning facilitated by Data Science is required for the decision, but there must be training in both fields of study. Keywords: data science – decisions – professional competence – statistics |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-02-28 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841 10.31381/paideia.v12i1.4841 |
| url |
http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841 |
| identifier_str_mv |
10.31381/paideia.v12i1.4841 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/5819 http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/8248 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2022 Paideia XXI info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2022 Paideia XXI |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| dc.source.none.fl_str_mv |
Paideia XXI; Vol. 12 Núm. 1 (2022): PAIDEIA XXI; 161-167 Paideia XXI; Vol. 12 No. 1 (2022): PAIDEIA XXI; 161-167 2519-5700 2221-7770 10.31381/paideia.v12i1 reponame:Revistas - Universidad Ricardo Palma instname:Universidad Ricardo Palma instacron:URP |
| instname_str |
Universidad Ricardo Palma |
| instacron_str |
URP |
| institution |
URP |
| reponame_str |
Revistas - Universidad Ricardo Palma |
| collection |
Revistas - Universidad Ricardo Palma |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1789625154255454208 |
| spelling |
TRAINING DECISION AS AN ELEMENT OF SCIENTIFIC RESEARCH FROM THE CONCEPTUALIZATION OF STATISTICS AND DATA SCIENCE: THE OBVIOUS, NOT SO OBVIOUSDECISIÓN FORMATIVA COMO ELEMENTO DE LA INVESTIGACIÓN CIENTÍFICA DESDE LA CONCEPTUALIZACIÓN ESTADÍSTICA Y CIENCIA DE DATOS: LO OBVIO, NO TAN OBVIOArgota-Pérez, GeorgeArgota-Pérez, YadiraÁlvarez-Becerra, Rina MaríaReyes-Diaz, María Gilda The purpose of the study was to describe the need for decision-making from the conceptualized training between Statistics and Data Science. Four elements are key in science: theory, data, methodology, and problem, because if the data is part of science then it seems wrong that there is a DataScience since no methodology from Data Science can decide, the “ideal or correct” pattern since there are multiple patterns to be understood. On the other hand, if the statistical programs are incapable of analyzing hundreds of thousands of data (it makes no sense when decisions are recognized from a random probabilistic sample and, on the contrary, not considered makes it impossible to make inferences), then the possibility of representing diversity from Statistics is limited since there is centralization in minimizing the sums of the deviations to the mean square and not understanding the diversity that Data Science performs. It is concluded that Statistics adds to reliability and validity, while Data Science allows the development of methodologies that condition the incorporation of technologies where it is difficult to unmark the barrier between Statistics and Data Science because on some occasions they are indistinct from each other and in other cases an association is shared. Therefore, mastery of data processing from Statistics and machine learning facilitated by Data Science is required for the decision, but there must be training in both fields of study. Keywords: data science – decisions – professional competence – statisticsEl propósito del estudio fue describir la necesidad en la toma de decisiones desde la formación conceptualizada entre la Estadística y Ciencia de Datos. Cuatro elementos son claves en la ciencia: teoría, datos, metodología y problema, por cuanto, si los datos forman parte de la ciencia entonces, parece erróneo que exista una Ciencia de Datos, pues ninguna metodología desde la Ciencia de Datos puede decidir, el patrón “ideal o correcto” dado que existen múltiples patrones a comprenderse. Por su parte, si los programas estadísticos son incapaces de analizar cientos de miles de datos (carece de sentido al reconocerse las decisiones desde una muestra probabilística aleatoria y, por el contrario, no considerarse imposibilita hacer inferencias), entonces la posibilidad de representar la diversidad desde la Estadística es limitada, ya que existe una centralización en minimizar las sumas de las desviaciones al cuadrado medio y no comprender la diversidad que realiza la Ciencia de Datos. Se concluye, que la Estadística suma a la confiabilidad y validez, mientras que la Ciencia de Datos permite el desarrollo de metodologías que condicionan a la incorporación de tecnologías donde resulta difícil desmarcar la barrera entre la Estadística y la Ciencia de Datos, pues en algunas ocasiones son indistintas entre sí y en otros casos se comparte una asociación. Por tanto, el dominio del tratamiento de los datos desde la Estadística y el aprendizaje automático que facilita la Ciencia de Datos se requiere para la decisión, pero debe existir la formación en ambos campos de estudio. Palabras clave: ciencia de datos – competencia profesional – decisiones – estadísticaUniversidad Ricardo Palma2023-02-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.urp.edu.pe/index.php/Paideia/article/view/484110.31381/paideia.v12i1.4841Paideia XXI; Vol. 12 Núm. 1 (2022): PAIDEIA XXI; 161-167Paideia XXI; Vol. 12 No. 1 (2022): PAIDEIA XXI; 161-1672519-57002221-777010.31381/paideia.v12i1reponame:Revistas - Universidad Ricardo Palmainstname:Universidad Ricardo Palmainstacron:URPspahttp://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/5819http://revistas.urp.edu.pe/index.php/Paideia/article/view/4841/8248Derechos de autor 2022 Paideia XXIinfo:eu-repo/semantics/openAccessoai:oai.revistas.urp.edu.pe:article/48412023-02-28T17:00:38Z |
| score |
13.897231 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).