Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB
Descripción del Articulo
Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to pre...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Privada de Tacna |
Repositorio: | Revistas - Universidad Privada de Tacna |
Lenguaje: | español |
OAI Identifier: | oai:revistas.upt.edu.pe:article/464 |
Enlace del recurso: | https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464 |
Nivel de acceso: | acceso abierto |
Materia: | Rendimiento académico red neuronal artificial predicción Academic performance artificial neural network prediction |
id |
REVUPT_7676109d1288bae3fa7c303f55b5b036 |
---|---|
oai_identifier_str |
oai:revistas.upt.edu.pe:article/464 |
network_acronym_str |
REVUPT |
network_name_str |
Revistas - Universidad Privada de Tacna |
repository_id_str |
|
spelling |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLBDiseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLBIncio Flores, Fernando AlainCapuñay Sanchez, Dulce LuceroEstela Urbina, Ronald OmarDelgado Soto, Jorge AntonioVergara Medrano, Segundo EdilbertoRendimiento académicored neuronal artificialpredicciónAcademic performanceartificial neural networkpredictionPredicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to predict the academic results of the physics course of the students of the II cycle of the Civil Engineering career of the National Intercultural University Fabiola Salazar Leguía de Bagua-Peru based on data historical. The RNA was designed and implemented in the MATLAB Software, its architecture is made up of an input layer, a hidden layer and an output layer, for the RNA training two algorithms that the MATLAB Toolbox has: the Scaled Conjugate Gradient achieving a prediction percentage of 70% and the Levenberg-Marquardt achieving a prediction percentage of 86%.Predecir los resultados académicos de los estudiantes permite al docente buscar técnicas y estrategias en el tiempo indicado durante el proceso de enseñanza y aprendizaje con el fin de mejorar el logro de competencias en sus estudiantes. En esta investigación se implementó una red neuronal artificial (RNA) para predecir los resultados académicos del curso de física de los estudiantes del II ciclo de la carrera profesional de Ingeniería Civil de la universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua-Perú en función de datos históricos. La RNA se diseñó e implemento en el Software MATLAB, su arquitectura está formada por una capa de entrada, una capa oculta y una capa de salida, para el entrenamiento de la RNA se utilizó dos algoritmos que posee la Toolbox de MATLAB: el Scaled Conjugate Gradient logrando un porcentaje de predicción del 70% y el Levenberg-Marquardt logrando un porcentaje de predicción 86%.Universidad Privada de Tacna2021-05-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/46410.47796/ves.v10i1.464REVISTA VERITAS ET SCIENTIA - UPT; Vol. 10 No. 1 (2021): Veritas et Scientia; 107 - 117REVISTA VERITAS ET SCIENTIA - UPT; Vol. 10 Núm. 1 (2021): Veritas et Scientia; 107 - 1172617-06392307-513910.47796/ves.v10i1reponame:Revistas - Universidad Privada de Tacnainstname:Universidad Privada de Tacnainstacron:UPTspahttps://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/373https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/397info:eu-repo/semantics/openAccessoai:revistas.upt.edu.pe:article/4642022-10-19T18:16:42Z |
dc.title.none.fl_str_mv |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB |
title |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB |
spellingShingle |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB Incio Flores, Fernando Alain Rendimiento académico red neuronal artificial predicción Academic performance artificial neural network prediction |
title_short |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB |
title_full |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB |
title_fullStr |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB |
title_full_unstemmed |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB |
title_sort |
Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB |
dc.creator.none.fl_str_mv |
Incio Flores, Fernando Alain Capuñay Sanchez, Dulce Lucero Estela Urbina, Ronald Omar Delgado Soto, Jorge Antonio Vergara Medrano, Segundo Edilberto |
author |
Incio Flores, Fernando Alain |
author_facet |
Incio Flores, Fernando Alain Capuñay Sanchez, Dulce Lucero Estela Urbina, Ronald Omar Delgado Soto, Jorge Antonio Vergara Medrano, Segundo Edilberto |
author_role |
author |
author2 |
Capuñay Sanchez, Dulce Lucero Estela Urbina, Ronald Omar Delgado Soto, Jorge Antonio Vergara Medrano, Segundo Edilberto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Rendimiento académico red neuronal artificial predicción Academic performance artificial neural network prediction |
topic |
Rendimiento académico red neuronal artificial predicción Academic performance artificial neural network prediction |
description |
Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to predict the academic results of the physics course of the students of the II cycle of the Civil Engineering career of the National Intercultural University Fabiola Salazar Leguía de Bagua-Peru based on data historical. The RNA was designed and implemented in the MATLAB Software, its architecture is made up of an input layer, a hidden layer and an output layer, for the RNA training two algorithms that the MATLAB Toolbox has: the Scaled Conjugate Gradient achieving a prediction percentage of 70% and the Levenberg-Marquardt achieving a prediction percentage of 86%. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464 10.47796/ves.v10i1.464 |
url |
https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464 |
identifier_str_mv |
10.47796/ves.v10i1.464 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/373 https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464/397 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidad Privada de Tacna |
publisher.none.fl_str_mv |
Universidad Privada de Tacna |
dc.source.none.fl_str_mv |
REVISTA VERITAS ET SCIENTIA - UPT; Vol. 10 No. 1 (2021): Veritas et Scientia; 107 - 117 REVISTA VERITAS ET SCIENTIA - UPT; Vol. 10 Núm. 1 (2021): Veritas et Scientia; 107 - 117 2617-0639 2307-5139 10.47796/ves.v10i1 reponame:Revistas - Universidad Privada de Tacna instname:Universidad Privada de Tacna instacron:UPT |
instname_str |
Universidad Privada de Tacna |
instacron_str |
UPT |
institution |
UPT |
reponame_str |
Revistas - Universidad Privada de Tacna |
collection |
Revistas - Universidad Privada de Tacna |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1844889324852609024 |
score |
12.827443 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).