Design and implementation of an artificial neural network to predict academic performance in Civil Engineering students from UNIFSLB

Descripción del Articulo

Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to pre...

Descripción completa

Detalles Bibliográficos
Autores: Incio Flores, Fernando Alain, Capuñay Sanchez, Dulce Lucero, Estela Urbina, Ronald Omar, Delgado Soto, Jorge Antonio, Vergara Medrano, Segundo Edilberto
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Privada de Tacna
Repositorio:Revistas - Universidad Privada de Tacna
Lenguaje:español
OAI Identifier:oai:revistas.upt.edu.pe:article/464
Enlace del recurso:https://revistas.upt.edu.pe/ojs/index.php/vestsc/article/view/464
Nivel de acceso:acceso abierto
Materia:Rendimiento académico
red neuronal artificial
predicción
Academic performance
artificial neural network
prediction
Descripción
Sumario:Predicting the academic results of students allows the teacher to seek techniques and strategies at the indicated time during the teaching and learning process in order to improve the achievement of skills in their students. In this research, an artificial neural network (ANN) was implemented to predict the academic results of the physics course of the students of the II cycle of the Civil Engineering career of the National Intercultural University Fabiola Salazar Leguía de Bagua-Peru based on data historical. The RNA was designed and implemented in the MATLAB Software, its architecture is made up of an input layer, a hidden layer and an output layer, for the RNA training two algorithms that the MATLAB Toolbox has: the Scaled Conjugate Gradient achieving a prediction percentage of 70% and the Levenberg-Marquardt achieving a prediction percentage of 86%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).