Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains

Descripción del Articulo

The mechanisms of conversion to elemental sulfur, sulphites, sulfates and others; they are diverse, leading to the formation of sulfuric acid and therefore, to the acidification of the medium. Based on these characteristics, acidophilic bacteria are considered as sulfur chemolytotrophs, since they o...

Descripción completa

Detalles Bibliográficos
Autores: Arias Arce, Vladimir, Lovera Dávila, Daniel, Diego Carbajal, Jorge, Gil, Juan, Ramírez, Luis, Cayo, Hans
Formato: artículo
Fecha de Publicación:2015
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/11842
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/11842
Nivel de acceso:acceso abierto
Materia:Thiosulfate biooxidation
native acidophilic strains
acid effluents
sulfide dissolution
potential ORP
Biooxidación de tiosulfato
cepas nativas acidófilas
efluentes ácidos
disolución de sulfuros
potencial ORP
id REVUNMSM_6ab179bbf4d28656e7cd129a1e7a9c33
oai_identifier_str oai:ojs.csi.unmsm:article/11842
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
dc.title.none.fl_str_mv Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
Biooxidación de tiosulfato como mecanismo indirecto para la lixiviación de minerales mediante cepas nativas acidófilas
title Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
spellingShingle Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
Arias Arce, Vladimir
Thiosulfate biooxidation
native acidophilic strains
acid effluents
sulfide dissolution
potential ORP
Biooxidación de tiosulfato
cepas nativas acidófilas
efluentes ácidos
disolución de sulfuros
potencial ORP
title_short Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
title_full Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
title_fullStr Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
title_full_unstemmed Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
title_sort Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strains
dc.creator.none.fl_str_mv Arias Arce, Vladimir
Lovera Dávila, Daniel
Diego Carbajal, Jorge
Gil, Juan
Ramírez, Luis
Cayo, Hans
author Arias Arce, Vladimir
author_facet Arias Arce, Vladimir
Lovera Dávila, Daniel
Diego Carbajal, Jorge
Gil, Juan
Ramírez, Luis
Cayo, Hans
author_role author
author2 Lovera Dávila, Daniel
Diego Carbajal, Jorge
Gil, Juan
Ramírez, Luis
Cayo, Hans
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Thiosulfate biooxidation
native acidophilic strains
acid effluents
sulfide dissolution
potential ORP
Biooxidación de tiosulfato
cepas nativas acidófilas
efluentes ácidos
disolución de sulfuros
potencial ORP
topic Thiosulfate biooxidation
native acidophilic strains
acid effluents
sulfide dissolution
potential ORP
Biooxidación de tiosulfato
cepas nativas acidófilas
efluentes ácidos
disolución de sulfuros
potencial ORP
description The mechanisms of conversion to elemental sulfur, sulphites, sulfates and others; they are diverse, leading to the formation of sulfuric acid and therefore, to the acidification of the medium. Based on these characteristics, acidophilic bacteria are considered as sulfur chemolytotrophs, since they obtain their energy from the conversion of sulfur compounds and, in most cases, the final product is sulfate. The acid formed by these bacteria that oxidize sulfides is sulfuric acid. Similarly, bacteria isolated from acid drains, during their metabolic action, generate a decrease in pH. The Thiobacillus genus is relevant among the others for its ability to oxidize sulfur compounds, producing elemental sulfur extracellularly. The energy required to carry out its functions is derived from the oxidation of one or more reduced sulfur compounds including sulfide and thiosulfate. In the study of the oxidation of thiosulfate, the increase in the bacterial population was observed up to 8.6x108Cel / ml and oxide reduction potentials (ORP) of up to 615mV. At pH values ​​between 1.8 and 2.2 and at thiosulfate concentrations of 2.2 gr / L . The greatest population increase of the bacteria was obtained in periods of 10 and 15 days of evolution. The monitoring of the potential made it possible to identify the state of operation of the sulfoxidant system. A direct relationship was found between the ORP and the bacterial population.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/11842
10.15381/iigeo.v18i35.11842
url https://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/11842
identifier_str_mv 10.15381/iigeo.v18i35.11842
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/11842/10569
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica
dc.source.none.fl_str_mv Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas; Vol. 18 No. 35 (2015)
Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas; Vol. 18 Núm. 35 (2015)
1682-3087
1561-0888
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238286994702336
spelling Thiosulfate biooxidation as an indirect mechanism for mineral leaching using native acidophilic strainsBiooxidación de tiosulfato como mecanismo indirecto para la lixiviación de minerales mediante cepas nativas acidófilasArias Arce, VladimirLovera Dávila, DanielDiego Carbajal, JorgeGil, JuanRamírez, LuisCayo, HansThiosulfate biooxidationnative acidophilic strainsacid effluentssulfide dissolutionpotential ORPBiooxidación de tiosulfatocepas nativas acidófilasefluentes ácidosdisolución de sulfurospotencial ORPThe mechanisms of conversion to elemental sulfur, sulphites, sulfates and others; they are diverse, leading to the formation of sulfuric acid and therefore, to the acidification of the medium. Based on these characteristics, acidophilic bacteria are considered as sulfur chemolytotrophs, since they obtain their energy from the conversion of sulfur compounds and, in most cases, the final product is sulfate. The acid formed by these bacteria that oxidize sulfides is sulfuric acid. Similarly, bacteria isolated from acid drains, during their metabolic action, generate a decrease in pH. The Thiobacillus genus is relevant among the others for its ability to oxidize sulfur compounds, producing elemental sulfur extracellularly. The energy required to carry out its functions is derived from the oxidation of one or more reduced sulfur compounds including sulfide and thiosulfate. In the study of the oxidation of thiosulfate, the increase in the bacterial population was observed up to 8.6x108Cel / ml and oxide reduction potentials (ORP) of up to 615mV. At pH values ​​between 1.8 and 2.2 and at thiosulfate concentrations of 2.2 gr / L . The greatest population increase of the bacteria was obtained in periods of 10 and 15 days of evolution. The monitoring of the potential made it possible to identify the state of operation of the sulfoxidant system. A direct relationship was found between the ORP and the bacterial population.Los mecanismos de conversión a azufre elemental, sulfitos, sulfatos y otros; son diversos, conllevando a la formación de ácido sulfúrico y por ende, a la acidificación del medio. En base a estas características, las bacterias acidófilas son consideradas como quimiolitótrofas de azufre, ya que obtienen su energía a partir de la conversión de compuestos de azufre y, en la mayoría de los casos, el producto final es el sulfato. El ácido formado por estas bacterias que oxidan los sulfuros es el ácido sulfúrico. Del mismo modo, las bacterias aisladas de drenajes ácidos, durante su acción metabólica, generan la disminución del pH. El género Thiobacillus es relevante entre los demás por su capacidad de oxidar compuestos azufrados, produciendo azufre elemental de manera extracelular. La energía necesaria para llevar a cabo sus funciones se deriva de la oxidación de uno o más compuestos reducidos de azufre incluyendo sulfuro y tiosulfato. En el estudio de la oxidación del tiosulfato se observó el incremento de la población bacteriana hasta 8.6x108Cel/ml y potenciales de óxido reducción (ORP) de hasta 615mV.a valores de pH entre 1.8 y 2.2 y a concentraciones de tiosulfato de 2.2 gr/L. El mayor incremento poblacional de la bacteria se obtuvo en periodos de 10 y 15 días de evolución. El monitoreo del potencial permitió identificar el estado de funcionamiento que tiene el sistema sulfoxidante. Se encontró una relación directa entre el ORP y la población bacteriana.Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica2015-07-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/1184210.15381/iigeo.v18i35.11842Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas; Vol. 18 No. 35 (2015)Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas; Vol. 18 Núm. 35 (2015)1682-30871561-0888reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/11842/10569Derechos de autor 2015 Vladimir Arias A, Daniel Lovera D., Jorge Diego C., Juan Gil R., Luis Ramírez O., Hans Cayo G.https://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/118422020-07-10T22:12:16Z
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).