Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)

Descripción del Articulo

The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Ce...

Descripción completa

Detalles Bibliográficos
Autores: Bezada Q., Sandra, Arbaiza F., Teresa, Carcelén C., Fernando, San Martín H., Felipe, López L, Christian, Rojas E., Jean, Rivadeneira, Virginia, Espezúa F., Oscar, Guevara V., Jorge, Vélez M., Víctor
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/13357
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357
Nivel de acceso:acceso abierto
Materia:NIRS
near infrared spectroscopy
forage evaluation
proximate analysis
Italian rye grass
Lolium multiflorum Lam
calibration
espectroscopía de reflectancia en infrarrojo cercano
evaluación de forrajes
análisis proximal
rye grass italiano
calibración
id REVUNMSM_5b9c78c0b028c7dee151fa108c8fe9b8
oai_identifier_str oai:ojs.csi.unmsm:article/13357
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
dc.title.none.fl_str_mv Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
Predicción de la Composición Química y Fibra Detergente Neutro de Rye Grass Italiano (Lolium multiflorum Lam) mediante Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS)
title Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
spellingShingle Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
Bezada Q., Sandra
NIRS
near infrared spectroscopy
forage evaluation
proximate analysis
Italian rye grass
Lolium multiflorum Lam
calibration
NIRS
espectroscopía de reflectancia en infrarrojo cercano
evaluación de forrajes
análisis proximal
rye grass italiano
Lolium multiflorum Lam
calibración
title_short Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
title_full Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
title_fullStr Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
title_full_unstemmed Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
title_sort Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
dc.creator.none.fl_str_mv Bezada Q., Sandra
Arbaiza F., Teresa
Carcelén C., Fernando
San Martín H., Felipe
López L, Christian
Rojas E., Jean
Rivadeneira, Virginia
Espezúa F., Oscar
Guevara V., Jorge
Vélez M., Víctor
author Bezada Q., Sandra
author_facet Bezada Q., Sandra
Arbaiza F., Teresa
Carcelén C., Fernando
San Martín H., Felipe
López L, Christian
Rojas E., Jean
Rivadeneira, Virginia
Espezúa F., Oscar
Guevara V., Jorge
Vélez M., Víctor
author_role author
author2 Arbaiza F., Teresa
Carcelén C., Fernando
San Martín H., Felipe
López L, Christian
Rojas E., Jean
Rivadeneira, Virginia
Espezúa F., Oscar
Guevara V., Jorge
Vélez M., Víctor
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv NIRS
near infrared spectroscopy
forage evaluation
proximate analysis
Italian rye grass
Lolium multiflorum Lam
calibration
NIRS
espectroscopía de reflectancia en infrarrojo cercano
evaluación de forrajes
análisis proximal
rye grass italiano
Lolium multiflorum Lam
calibración
topic NIRS
near infrared spectroscopy
forage evaluation
proximate analysis
Italian rye grass
Lolium multiflorum Lam
calibration
NIRS
espectroscopía de reflectancia en infrarrojo cercano
evaluación de forrajes
análisis proximal
rye grass italiano
Lolium multiflorum Lam
calibración
description The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam).
publishDate 2017
dc.date.none.fl_str_mv 2017-10-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357
10.15381/rivep.v28i3.13357
url https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357
identifier_str_mv 10.15381/rivep.v28i3.13357
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357/12250
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria
dc.source.none.fl_str_mv Revista de Investigaciones Veterinarias del Perú; Vol. 28 Núm. 3 (2017); 538-548
Revista de Investigaciones Veterinarias del Perú; Vol. 28 No. 3 (2017); 538-548
1682-3419
1609-9117
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238228426489856
spelling Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)Predicción de la Composición Química y Fibra Detergente Neutro de Rye Grass Italiano (Lolium multiflorum Lam) mediante Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS)Bezada Q., SandraArbaiza F., TeresaCarcelén C., FernandoSan Martín H., FelipeLópez L, ChristianRojas E., JeanRivadeneira, VirginiaEspezúa F., OscarGuevara V., JorgeVélez M., VíctorNIRSnear infrared spectroscopyforage evaluationproximate analysisItalian rye grassLolium multiflorum LamcalibrationNIRSespectroscopía de reflectancia en infrarrojo cercanoevaluación de forrajesanálisis proximalrye grass italianoLolium multiflorum LamcalibraciónThe aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam).El objetivo del presente estudio fue generar ecuaciones de calibración que permitan predecir la composición químico nutricional de la especie forrajera rye grass italiano (RG) (Lolium multiflorum Lam) mediante la técnica de Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS). Se colectaron 75 muestras de RG de diferentes semanas de corte provenientes de los campos experimentales del Centro de Investigacion IVITA-El Mantaro (Huancayo, Perú), a las cuales se les realizó la captura del espectro mediante equipo NIRS y se hizo el análisis químico de referencia para los componentes proteína cruda (PC), extracto etéreo (EE), cenizas totales (CZ), fibra cruda (FC) y fibra detergente neutro (FDN). Se desarrolló un modelo de calibración y validación mediante mínimos cuadrados parciales (PLS) y como estadísticos de exactitud y precisión se utilizaron el coeficiente de correlación (R), coeficiente de determinación (R2), raíz cuadrada media del error de calibración (RMSEC), raíz cuadrada media del error de predicción (RMSEP), proporción del rango con el error (RER) y desviación residual predictiva (RPD). El análisis proximal promedio fue para PC=19.02%, EE=4.53%, CZ=12.79%, FC=16.50% y FDN=60.98%. Altos valores de R2 y bajos RMSEC y RMSEP fueron obtenidos para PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) y FDN (0.90, 1.01, 1.25, respectivamente). El mayor RER (22.34) y RPD (4.90) se obtuvo para EE. Se concluye que las ecuaciones de calibración y validación NIRS obtenidas permiten una óptima predicción cuantitativa de PC, EE, CZ y FDN en rye grass italiano (Lolium multiflorum Lam).Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2017-10-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/1335710.15381/rivep.v28i3.13357Revista de Investigaciones Veterinarias del Perú; Vol. 28 Núm. 3 (2017); 538-548Revista de Investigaciones Veterinarias del Perú; Vol. 28 No. 3 (2017); 538-5481682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357/12250Derechos de autor 2017 Sandra Bezada Q., Teresa Arbaiza F., Fernando Carcelén C., Felipe San Martín H., Christian López L, Jean Rojas E., Virginia Rivadeneira, Oscar Espezúa F., Jorge Guevara V., Víctor Vélez M.https://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/133572017-12-19T16:57:15Z
score 13.960035
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).