Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)
Descripción del Articulo
The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Ce...
Autores: | , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/13357 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357 |
Nivel de acceso: | acceso abierto |
Materia: | NIRS near infrared spectroscopy forage evaluation proximate analysis Italian rye grass Lolium multiflorum Lam calibration espectroscopía de reflectancia en infrarrojo cercano evaluación de forrajes análisis proximal rye grass italiano calibración |
id |
REVUNMSM_5b9c78c0b028c7dee151fa108c8fe9b8 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/13357 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
dc.title.none.fl_str_mv |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) Predicción de la Composición Química y Fibra Detergente Neutro de Rye Grass Italiano (Lolium multiflorum Lam) mediante Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS) |
title |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) |
spellingShingle |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) Bezada Q., Sandra NIRS near infrared spectroscopy forage evaluation proximate analysis Italian rye grass Lolium multiflorum Lam calibration NIRS espectroscopía de reflectancia en infrarrojo cercano evaluación de forrajes análisis proximal rye grass italiano Lolium multiflorum Lam calibración |
title_short |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) |
title_full |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) |
title_fullStr |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) |
title_full_unstemmed |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) |
title_sort |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS) |
dc.creator.none.fl_str_mv |
Bezada Q., Sandra Arbaiza F., Teresa Carcelén C., Fernando San Martín H., Felipe López L, Christian Rojas E., Jean Rivadeneira, Virginia Espezúa F., Oscar Guevara V., Jorge Vélez M., Víctor |
author |
Bezada Q., Sandra |
author_facet |
Bezada Q., Sandra Arbaiza F., Teresa Carcelén C., Fernando San Martín H., Felipe López L, Christian Rojas E., Jean Rivadeneira, Virginia Espezúa F., Oscar Guevara V., Jorge Vélez M., Víctor |
author_role |
author |
author2 |
Arbaiza F., Teresa Carcelén C., Fernando San Martín H., Felipe López L, Christian Rojas E., Jean Rivadeneira, Virginia Espezúa F., Oscar Guevara V., Jorge Vélez M., Víctor |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
NIRS near infrared spectroscopy forage evaluation proximate analysis Italian rye grass Lolium multiflorum Lam calibration NIRS espectroscopía de reflectancia en infrarrojo cercano evaluación de forrajes análisis proximal rye grass italiano Lolium multiflorum Lam calibración |
topic |
NIRS near infrared spectroscopy forage evaluation proximate analysis Italian rye grass Lolium multiflorum Lam calibration NIRS espectroscopía de reflectancia en infrarrojo cercano evaluación de forrajes análisis proximal rye grass italiano Lolium multiflorum Lam calibración |
description |
The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam). |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357 10.15381/rivep.v28i3.13357 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357 |
identifier_str_mv |
10.15381/rivep.v28i3.13357 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357/12250 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria |
dc.source.none.fl_str_mv |
Revista de Investigaciones Veterinarias del Perú; Vol. 28 Núm. 3 (2017); 538-548 Revista de Investigaciones Veterinarias del Perú; Vol. 28 No. 3 (2017); 538-548 1682-3419 1609-9117 reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238228426489856 |
spelling |
Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS)Predicción de la Composición Química y Fibra Detergente Neutro de Rye Grass Italiano (Lolium multiflorum Lam) mediante Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS)Bezada Q., SandraArbaiza F., TeresaCarcelén C., FernandoSan Martín H., FelipeLópez L, ChristianRojas E., JeanRivadeneira, VirginiaEspezúa F., OscarGuevara V., JorgeVélez M., VíctorNIRSnear infrared spectroscopyforage evaluationproximate analysisItalian rye grassLolium multiflorum LamcalibrationNIRSespectroscopía de reflectancia en infrarrojo cercanoevaluación de forrajesanálisis proximalrye grass italianoLolium multiflorum LamcalibraciónThe aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam).El objetivo del presente estudio fue generar ecuaciones de calibración que permitan predecir la composición químico nutricional de la especie forrajera rye grass italiano (RG) (Lolium multiflorum Lam) mediante la técnica de Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS). Se colectaron 75 muestras de RG de diferentes semanas de corte provenientes de los campos experimentales del Centro de Investigacion IVITA-El Mantaro (Huancayo, Perú), a las cuales se les realizó la captura del espectro mediante equipo NIRS y se hizo el análisis químico de referencia para los componentes proteína cruda (PC), extracto etéreo (EE), cenizas totales (CZ), fibra cruda (FC) y fibra detergente neutro (FDN). Se desarrolló un modelo de calibración y validación mediante mínimos cuadrados parciales (PLS) y como estadísticos de exactitud y precisión se utilizaron el coeficiente de correlación (R), coeficiente de determinación (R2), raíz cuadrada media del error de calibración (RMSEC), raíz cuadrada media del error de predicción (RMSEP), proporción del rango con el error (RER) y desviación residual predictiva (RPD). El análisis proximal promedio fue para PC=19.02%, EE=4.53%, CZ=12.79%, FC=16.50% y FDN=60.98%. Altos valores de R2 y bajos RMSEC y RMSEP fueron obtenidos para PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) y FDN (0.90, 1.01, 1.25, respectivamente). El mayor RER (22.34) y RPD (4.90) se obtuvo para EE. Se concluye que las ecuaciones de calibración y validación NIRS obtenidas permiten una óptima predicción cuantitativa de PC, EE, CZ y FDN en rye grass italiano (Lolium multiflorum Lam).Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria2017-10-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/1335710.15381/rivep.v28i3.13357Revista de Investigaciones Veterinarias del Perú; Vol. 28 Núm. 3 (2017); 538-548Revista de Investigaciones Veterinarias del Perú; Vol. 28 No. 3 (2017); 538-5481682-34191609-9117reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/13357/12250Derechos de autor 2017 Sandra Bezada Q., Teresa Arbaiza F., Fernando Carcelén C., Felipe San Martín H., Christian López L, Jean Rojas E., Virginia Rivadeneira, Oscar Espezúa F., Jorge Guevara V., Víctor Vélez M.https://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/133572017-12-19T16:57:15Z |
score |
13.960035 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).