Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations

Descripción del Articulo

The Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest manag...

Descripción completa

Detalles Bibliográficos
Autores: Chumbimune-Vivanco, Sheyla Y., León, Hairo, Llanos-Carrillo, Cristina, Millan-Ramírez, José, Vilca-Gamarra, Cesar, Vera, Elvis, Agurto, Alex, Baselly-Villanueva, Juan R., Cruz-Grimaldo, Camila
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6386
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386
Nivel de acceso:acceso abierto
Materia:UAV
LiDAR
biomass
carbon stocks
vegetation indices
VANT
biomasa
carbono almacenado
índices de vegetación
id REVUNITRU_d1ff6c59285fdcac274eaf722c9d4109
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6386
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
Integración de VANT-LiDAR con imágenes multiespectrales para la estimación del carbono almacenado en plantaciones forestales de Prosopis sp.
title Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
spellingShingle Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
Chumbimune-Vivanco, Sheyla Y.
UAV
LiDAR
biomass
carbon stocks
vegetation indices
VANT
LiDAR
biomasa
carbono almacenado
índices de vegetación
title_short Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
title_full Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
title_fullStr Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
title_full_unstemmed Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
title_sort Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
dc.creator.none.fl_str_mv Chumbimune-Vivanco, Sheyla Y.
León, Hairo
Llanos-Carrillo, Cristina
Millan-Ramírez, José
Vilca-Gamarra, Cesar
Vera, Elvis
Agurto, Alex
Baselly-Villanueva, Juan R.
Cruz-Grimaldo, Camila
author Chumbimune-Vivanco, Sheyla Y.
author_facet Chumbimune-Vivanco, Sheyla Y.
León, Hairo
Llanos-Carrillo, Cristina
Millan-Ramírez, José
Vilca-Gamarra, Cesar
Vera, Elvis
Agurto, Alex
Baselly-Villanueva, Juan R.
Cruz-Grimaldo, Camila
author_role author
author2 León, Hairo
Llanos-Carrillo, Cristina
Millan-Ramírez, José
Vilca-Gamarra, Cesar
Vera, Elvis
Agurto, Alex
Baselly-Villanueva, Juan R.
Cruz-Grimaldo, Camila
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv UAV
LiDAR
biomass
carbon stocks
vegetation indices
VANT
LiDAR
biomasa
carbono almacenado
índices de vegetación
topic UAV
LiDAR
biomass
carbon stocks
vegetation indices
VANT
LiDAR
biomasa
carbono almacenado
índices de vegetación
description The Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest management and climate change mitigation. This study evaluates monitoring methodologies using multispectral and LiDAR images coupled to a UAV, to validate them and generate models to estimate carbon stocks. Seven species of Prosopis sp. were evaluated with the conventional methodology and significant differences were found between species for dasometric characteristics and vegetation indices, as well as in the comparison with the data obtained with LiDAR. Models were selected to determine BAF and the association between the aerial carbon obtained with the models constituted by LiDAR data and vegetation indexes that presented significant correlations (p < 0.05), seven models were built for carbon prediction and the model that has as regressor variables the total height and crown area obtained from LiDAR, as well as the indexes CIgreen, GNDVI, RECI, LCI and NDVI (R² = 0.77) stands out. This confirms that the use of the LiDAR methodology with the vegetation indices allows a more practical estimation of the carbon stored in the plantation.
publishDate 2025
dc.date.none.fl_str_mv 2025-05-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6411
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6901
dc.rights.none.fl_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 16 Núm. 3 (2025): julio-septiembre; 333-348
Scientia Agropecuaria; Vol. 16 No. 3 (2025): julio-septiembre; 333-348
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521098315759616
spelling Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantationsIntegración de VANT-LiDAR con imágenes multiespectrales para la estimación del carbono almacenado en plantaciones forestales de Prosopis sp.Chumbimune-Vivanco, Sheyla Y.León, Hairo Llanos-Carrillo, Cristina Millan-Ramírez, José Vilca-Gamarra, Cesar Vera, Elvis Agurto, Alex Baselly-Villanueva, Juan R. Cruz-Grimaldo, Camila UAVLiDARbiomasscarbon stocksvegetation indicesVANTLiDARbiomasacarbono almacenadoíndices de vegetaciónThe Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest management and climate change mitigation. This study evaluates monitoring methodologies using multispectral and LiDAR images coupled to a UAV, to validate them and generate models to estimate carbon stocks. Seven species of Prosopis sp. were evaluated with the conventional methodology and significant differences were found between species for dasometric characteristics and vegetation indices, as well as in the comparison with the data obtained with LiDAR. Models were selected to determine BAF and the association between the aerial carbon obtained with the models constituted by LiDAR data and vegetation indexes that presented significant correlations (p < 0.05), seven models were built for carbon prediction and the model that has as regressor variables the total height and crown area obtained from LiDAR, as well as the indexes CIgreen, GNDVI, RECI, LCI and NDVI (R² = 0.77) stands out. This confirms that the use of the LiDAR methodology with the vegetation indices allows a more practical estimation of the carbon stored in the plantation.Los individuos del género Prosopis sp. conocidos como algarrobos; son especies claves en el desarrollo del bosque seco y recuperación de áreas degradadas en la Costa norte del Perú. La evaluación de plantaciones, cálculo de la biomasa aérea forestal (BAF) y carbono almacenado representa un papel importante en el manejo forestal y mitigación del cambio climático. Este estudio evalúa metodologías de monitoreo a través del uso de imágenes multiespectrales y LiDAR acopladas a un VANT, con la finalidad de realizar su validación y generar modelos que permitan estimar el carbono almacenado. Se evaluaron siete especies de Prosopis sp. con la metodología convencional y se encontraron diferencias significativas entre las especies para las características dasométricas e índices de vegetación, así como en la comparación con los datos obtenidos con el LiDAR. Se seleccionaron modelos para determinar BAF y la asociación entre el carbono aéreo obtenido con los modelos constituidos por datos de LiDAR e índices de vegetación que presentaron correlaciones significativas (p < 0,05), se construyeron siete modelos para predicción de carbono y destaca el modelo que tiene como variables regresoras la altura total y área de copa obtenidas del LiDAR, así como los índices CIgreen, GNDVI, RECI, LCI y NDVI (R² = 0,77). Lo cual confirma que el uso de la metodología LiDAR con los índices de vegetación permite una estimación más práctica del carbono almacenado en la plantación.Universidad Nacional de Trujillo2025-05-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386Scientia Agropecuaria; Vol. 16 Núm. 3 (2025): julio-septiembre; 333-348Scientia Agropecuaria; Vol. 16 No. 3 (2025): julio-septiembre; 333-3482306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6411https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6901Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/63862025-05-05T14:44:38Z
score 13.040751
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).