Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations
Descripción del Articulo
The Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest manag...
| Autores: | , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6386 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386 |
| Nivel de acceso: | acceso abierto |
| Materia: | UAV LiDAR biomass carbon stocks vegetation indices VANT biomasa carbono almacenado índices de vegetación |
| id |
REVUNITRU_d1ff6c59285fdcac274eaf722c9d4109 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6386 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations Integración de VANT-LiDAR con imágenes multiespectrales para la estimación del carbono almacenado en plantaciones forestales de Prosopis sp. |
| title |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations |
| spellingShingle |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations Chumbimune-Vivanco, Sheyla Y. UAV LiDAR biomass carbon stocks vegetation indices VANT LiDAR biomasa carbono almacenado índices de vegetación |
| title_short |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations |
| title_full |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations |
| title_fullStr |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations |
| title_full_unstemmed |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations |
| title_sort |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations |
| dc.creator.none.fl_str_mv |
Chumbimune-Vivanco, Sheyla Y. León, Hairo Llanos-Carrillo, Cristina Millan-Ramírez, José Vilca-Gamarra, Cesar Vera, Elvis Agurto, Alex Baselly-Villanueva, Juan R. Cruz-Grimaldo, Camila |
| author |
Chumbimune-Vivanco, Sheyla Y. |
| author_facet |
Chumbimune-Vivanco, Sheyla Y. León, Hairo Llanos-Carrillo, Cristina Millan-Ramírez, José Vilca-Gamarra, Cesar Vera, Elvis Agurto, Alex Baselly-Villanueva, Juan R. Cruz-Grimaldo, Camila |
| author_role |
author |
| author2 |
León, Hairo Llanos-Carrillo, Cristina Millan-Ramírez, José Vilca-Gamarra, Cesar Vera, Elvis Agurto, Alex Baselly-Villanueva, Juan R. Cruz-Grimaldo, Camila |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
UAV LiDAR biomass carbon stocks vegetation indices VANT LiDAR biomasa carbono almacenado índices de vegetación |
| topic |
UAV LiDAR biomass carbon stocks vegetation indices VANT LiDAR biomasa carbono almacenado índices de vegetación |
| description |
The Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest management and climate change mitigation. This study evaluates monitoring methodologies using multispectral and LiDAR images coupled to a UAV, to validate them and generate models to estimate carbon stocks. Seven species of Prosopis sp. were evaluated with the conventional methodology and significant differences were found between species for dasometric characteristics and vegetation indices, as well as in the comparison with the data obtained with LiDAR. Models were selected to determine BAF and the association between the aerial carbon obtained with the models constituted by LiDAR data and vegetation indexes that presented significant correlations (p < 0.05), seven models were built for carbon prediction and the model that has as regressor variables the total height and crown area obtained from LiDAR, as well as the indexes CIgreen, GNDVI, RECI, LCI and NDVI (R² = 0.77) stands out. This confirms that the use of the LiDAR methodology with the vegetation indices allows a more practical estimation of the carbon stored in the plantation. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-05-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386 |
| url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6411 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6901 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 16 Núm. 3 (2025): julio-septiembre; 333-348 Scientia Agropecuaria; Vol. 16 No. 3 (2025): julio-septiembre; 333-348 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846521098315759616 |
| spelling |
Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantationsIntegración de VANT-LiDAR con imágenes multiespectrales para la estimación del carbono almacenado en plantaciones forestales de Prosopis sp.Chumbimune-Vivanco, Sheyla Y.León, Hairo Llanos-Carrillo, Cristina Millan-Ramírez, José Vilca-Gamarra, Cesar Vera, Elvis Agurto, Alex Baselly-Villanueva, Juan R. Cruz-Grimaldo, Camila UAVLiDARbiomasscarbon stocksvegetation indicesVANTLiDARbiomasacarbono almacenadoíndices de vegetaciónThe Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest management and climate change mitigation. This study evaluates monitoring methodologies using multispectral and LiDAR images coupled to a UAV, to validate them and generate models to estimate carbon stocks. Seven species of Prosopis sp. were evaluated with the conventional methodology and significant differences were found between species for dasometric characteristics and vegetation indices, as well as in the comparison with the data obtained with LiDAR. Models were selected to determine BAF and the association between the aerial carbon obtained with the models constituted by LiDAR data and vegetation indexes that presented significant correlations (p < 0.05), seven models were built for carbon prediction and the model that has as regressor variables the total height and crown area obtained from LiDAR, as well as the indexes CIgreen, GNDVI, RECI, LCI and NDVI (R² = 0.77) stands out. This confirms that the use of the LiDAR methodology with the vegetation indices allows a more practical estimation of the carbon stored in the plantation.Los individuos del género Prosopis sp. conocidos como algarrobos; son especies claves en el desarrollo del bosque seco y recuperación de áreas degradadas en la Costa norte del Perú. La evaluación de plantaciones, cálculo de la biomasa aérea forestal (BAF) y carbono almacenado representa un papel importante en el manejo forestal y mitigación del cambio climático. Este estudio evalúa metodologías de monitoreo a través del uso de imágenes multiespectrales y LiDAR acopladas a un VANT, con la finalidad de realizar su validación y generar modelos que permitan estimar el carbono almacenado. Se evaluaron siete especies de Prosopis sp. con la metodología convencional y se encontraron diferencias significativas entre las especies para las características dasométricas e índices de vegetación, así como en la comparación con los datos obtenidos con el LiDAR. Se seleccionaron modelos para determinar BAF y la asociación entre el carbono aéreo obtenido con los modelos constituidos por datos de LiDAR e índices de vegetación que presentaron correlaciones significativas (p < 0,05), se construyeron siete modelos para predicción de carbono y destaca el modelo que tiene como variables regresoras la altura total y área de copa obtenidas del LiDAR, así como los índices CIgreen, GNDVI, RECI, LCI y NDVI (R² = 0,77). Lo cual confirma que el uso de la metodología LiDAR con los índices de vegetación permite una estimación más práctica del carbono almacenado en la plantación.Universidad Nacional de Trujillo2025-05-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386Scientia Agropecuaria; Vol. 16 Núm. 3 (2025): julio-septiembre; 333-348Scientia Agropecuaria; Vol. 16 No. 3 (2025): julio-septiembre; 333-3482306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6411https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386/6901Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/63862025-05-05T14:44:38Z |
| score |
13.040751 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).