Integration of VANT-LiDAR with multispectral imagery for the estimation of carbon stocks in Prosopis sp. forest plantations

Descripción del Articulo

The Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest manag...

Descripción completa

Detalles Bibliográficos
Autores: Chumbimune-Vivanco, Sheyla Y., León, Hairo, Llanos-Carrillo, Cristina, Millan-Ramírez, José, Vilca-Gamarra, Cesar, Vera, Elvis, Agurto, Alex, Baselly-Villanueva, Juan R., Cruz-Grimaldo, Camila
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6386
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6386
Nivel de acceso:acceso abierto
Materia:UAV
LiDAR
biomass
carbon stocks
vegetation indices
VANT
biomasa
carbono almacenado
índices de vegetación
Descripción
Sumario:The Prosopis sp. individuals known as carob trees are key species in the development of dry forest and recovery of degraded areas in the northern coast of Peru. The evaluation of plantations, calculation of aboveground forest biomass (AFB) and carbon stock represent an important role in forest management and climate change mitigation. This study evaluates monitoring methodologies using multispectral and LiDAR images coupled to a UAV, to validate them and generate models to estimate carbon stocks. Seven species of Prosopis sp. were evaluated with the conventional methodology and significant differences were found between species for dasometric characteristics and vegetation indices, as well as in the comparison with the data obtained with LiDAR. Models were selected to determine BAF and the association between the aerial carbon obtained with the models constituted by LiDAR data and vegetation indexes that presented significant correlations (p < 0.05), seven models were built for carbon prediction and the model that has as regressor variables the total height and crown area obtained from LiDAR, as well as the indexes CIgreen, GNDVI, RECI, LCI and NDVI (R² = 0.77) stands out. This confirms that the use of the LiDAR methodology with the vegetation indices allows a more practical estimation of the carbon stored in the plantation.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).