Estimation of height and aerial biomass in Eucalyptus globulus plantations using UAV-LiDAR

Descripción del Articulo

The lack of precise methods for estimating forest biomass results in both economic losses and incorrect decisions in the management of forest plantations. In response to this issue, this study evaluated the effectiveness of using the DJI Zenmuse L1 LiDAR, mounted on a DJI Matrice 300 RTK UAV, to pro...

Descripción completa

Detalles Bibliográficos
Autores: Enriquez Pinedo, Lucía, Ortega Quispe, Kevin, Ccopi Trucios, Dennis, Urquizo Barrera, Julio, Rios Chavarría, Claudia, Pizarro Carcausto, Samuel, Matos Calderon, Diana, Patricio Rosales, Solanch, Rodríguez Cerrón, Mauro, Ore Aquino, Zoila, Paz Monge, Michel, Castañeda Tinco, Italo
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2675
Enlace del recurso:http://hdl.handle.net/20.500.12955/2675
Nivel de acceso:acceso abierto
Materia:Forest biomass
Remote sensors
LiDAR
Eucalyptus globulus
UAV
https://purl.org/pe-repo/ocde/ford#4.01.02
biomasa forestal | sensores remotos | LIDAR | Eucalyptus globulus | vehículos aéreos no tripulados
Descripción
Sumario:The lack of precise methods for estimating forest biomass results in both economic losses and incorrect decisions in the management of forest plantations. In response to this issue, this study evaluated the effectiveness of using the DJI Zenmuse L1 LiDAR, mounted on a DJI Matrice 300 RTK UAV, to provide three-dimensional measurements of canopy structure and estimate the aboveground biomass of Eucalyptus globulus. Various LiDAR metrics were employed alongside field measurements to calibrate predictive models using multiple regression and machine learning algorithms. The results at the individual tree level show that RF is the most accurate model, with a coefficient of determination (R²) of 0.76 in the training set and 0.66 in the test set, outperforming Elastic Net (R² of 0.58 and 0.57, respectively). At the plot level, a multiple regression model achieved an R² of 0.647, highlighting LiDAR-derived metrics as key predictors. The findings revealed that the combination of LiDAR with advanced statistical techniques, such as multiple regression and Random Forest, significantly improves the accuracy of biomass estimation, surpassing traditional methods based on allometric equations. Therefore, the use of LiDAR in conjunction with machine learning represents an effective alternative for biomasss estimation, with great potential in such plantations and contribute to more sustainable exploitation of timber resources.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).