Exportación Completada — 

Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru

Descripción del Articulo

Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s eco...

Descripción completa

Detalles Bibliográficos
Autores: Saravia Navarro, David, Salazar Coronel, Wilian, Valqui Valqui, Lamberto, Quille Mamani, Javier Alvaro, Porras Jorge, Zenaida Rossana, Corredor Arizapana, Flor Anita, Barboza Castillo, Elgar, Vásquez Pérez, Héctor Vladimir, Casas Diaz, Andrés V., Arbizu Berrocal, Carlos Irvin
Formato: artículo
Fecha de Publicación:2022
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2200
Enlace del recurso:https://hdl.handle.net/20.500.12955/2200
https://doi.org/10.3390/agronomy12112630
Nivel de acceso:acceso abierto
Materia:Vegetation indices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Precision agricultura
Zea mays
Agricultura de precisión
Fenotipado
Teledetección
Descripción
Sumario:Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).