Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
Descripción del Articulo
Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s eco...
Autores: | , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/2200 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2200 https://doi.org/10.3390/agronomy12112630 |
Nivel de acceso: | acceso abierto |
Materia: | Vegetation indices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Precision agricultura Zea mays Agricultura de precisión Fenotipado Teledetección |
id |
INIA_bbece1006da538dcc592df7234fc9b31 |
---|---|
oai_identifier_str |
oai:null:20.500.12955/2200 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.en.fl_str_mv |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
title |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
spellingShingle |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru Saravia Navarro, David Vegetation indices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Precision agricultura Phenotyping Remote sensing Zea mays Agricultura de precisión Fenotipado Teledetección |
title_short |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
title_full |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
title_fullStr |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
title_full_unstemmed |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
title_sort |
Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru |
author |
Saravia Navarro, David |
author_facet |
Saravia Navarro, David Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Zenaida Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Casas Diaz, Andrés V. Arbizu Berrocal, Carlos Irvin |
author_role |
author |
author2 |
Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Zenaida Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Casas Diaz, Andrés V. Arbizu Berrocal, Carlos Irvin |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Saravia Navarro, David Salazar Coronel, Wilian Valqui Valqui, Lamberto Quille Mamani, Javier Alvaro Porras Jorge, Zenaida Rossana Corredor Arizapana, Flor Anita Barboza Castillo, Elgar Vásquez Pérez, Héctor Vladimir Casas Diaz, Andrés V. Arbizu Berrocal, Carlos Irvin |
dc.subject.en.fl_str_mv |
Vegetation indices Precision farming Hybrid Phenotyping Remote sensing |
topic |
Vegetation indices Precision farming Hybrid Phenotyping Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Precision agricultura Phenotyping Remote sensing Zea mays Agricultura de precisión Fenotipado Teledetección |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
dc.subject.agrovoc.en.fl_str_mv |
Precision agricultura Phenotyping Remote sensing Zea mays |
dc.subject.agrovoc.es_PE.fl_str_mv |
Agricultura de precisión Fenotipado Teledetección |
description |
Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-06-05T17:55:30Z |
dc.date.available.none.fl_str_mv |
2023-06-05T17:55:30Z |
dc.date.issued.fl_str_mv |
2022-10-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.en.fl_str_mv |
Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630 |
dc.identifier.issn.none.fl_str_mv |
2073-4395 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2200 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/agronomy12112630 |
identifier_str_mv |
Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630 2073-4395 |
url |
https://hdl.handle.net/20.500.12955/2200 https://doi.org/10.3390/agronomy12112630 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2073-4395 |
dc.relation.ispartofseries.en.fl_str_mv |
Agronomy |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.en.fl_str_mv |
MDPI |
dc.publisher.country.none.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/b316b2bd-67c6-4fc6-9fdd-a2337ffff5f8/download https://repositorio.inia.gob.pe/bitstreams/0b51d01c-abf3-4a71-8098-8120c8235bc5/download https://repositorio.inia.gob.pe/bitstreams/33528738-8fc1-4c2e-a9c3-335c91034d7b/download https://repositorio.inia.gob.pe/bitstreams/e98d0399-bcdf-4742-856c-93512771767a/download |
bitstream.checksum.fl_str_mv |
31bf40d6533bc753c2895c1f03d57b3c 8a4605be74aa9ea9d79846c1fba20a33 855a2a08a70c14eafae23fbbdeaec394 4df993f042917c144ccdb0aaae6c9642 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331631087157248 |
spelling |
Saravia Navarro, DavidSalazar Coronel, WilianValqui Valqui, LambertoQuille Mamani, Javier AlvaroPorras Jorge, Zenaida RossanaCorredor Arizapana, Flor AnitaBarboza Castillo, ElgarVásquez Pérez, Héctor VladimirCasas Diaz, Andrés V.Arbizu Berrocal, Carlos Irvin2023-06-05T17:55:30Z2023-06-05T17:55:30Z2022-10-26Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy121126302073-4395https://hdl.handle.net/20.500.12955/2200https://doi.org/10.3390/agronomy12112630Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.application/pdfengMDPICHurn:issn:2073-4395Agronomyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAVegetation indicesPrecision farmingHybridPhenotypingRemote sensinghttps://purl.org/pe-repo/ocde/ford#4.01.06Precision agriculturaPhenotypingRemote sensingZea maysAgricultura de precisiónFenotipadoTeledetecciónYield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peruinfo:eu-repo/semantics/article1211ORIGINALSaravia_et-al_2022_maize_yield.pdfSaravia_et-al_2022_maize_yield.pdfArticle (English)application/pdf3123674https://repositorio.inia.gob.pe/bitstreams/b316b2bd-67c6-4fc6-9fdd-a2337ffff5f8/download31bf40d6533bc753c2895c1f03d57b3cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/0b51d01c-abf3-4a71-8098-8120c8235bc5/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSaravia_et-al_2022_maize_yield.pdf.txtSaravia_et-al_2022_maize_yield.pdf.txtExtracted texttext/plain48164https://repositorio.inia.gob.pe/bitstreams/33528738-8fc1-4c2e-a9c3-335c91034d7b/download855a2a08a70c14eafae23fbbdeaec394MD53THUMBNAILSaravia_et-al_2022_maize_yield.pdf.jpgSaravia_et-al_2022_maize_yield.pdf.jpgGenerated Thumbnailimage/jpeg1631https://repositorio.inia.gob.pe/bitstreams/e98d0399-bcdf-4742-856c-93512771767a/download4df993f042917c144ccdb0aaae6c9642MD5420.500.12955/2200oai:repositorio.inia.gob.pe:20.500.12955/22002024-01-26 15:16:42.368https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.87115 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).