Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru

Descripción del Articulo

Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s eco...

Descripción completa

Detalles Bibliográficos
Autores: Saravia Navarro, David, Salazar Coronel, Wilian, Valqui Valqui, Lamberto, Quille Mamani, Javier Alvaro, Porras Jorge, Zenaida Rossana, Corredor Arizapana, Flor Anita, Barboza Castillo, Elgar, Vásquez Pérez, Héctor Vladimir, Casas Diaz, Andrés V., Arbizu Berrocal, Carlos Irvin
Formato: artículo
Fecha de Publicación:2022
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2200
Enlace del recurso:https://hdl.handle.net/20.500.12955/2200
https://doi.org/10.3390/agronomy12112630
Nivel de acceso:acceso abierto
Materia:Vegetation indices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Precision agricultura
Zea mays
Agricultura de precisión
Fenotipado
Teledetección
id INIA_bbece1006da538dcc592df7234fc9b31
oai_identifier_str oai:null:20.500.12955/2200
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.en.fl_str_mv Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
title Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
spellingShingle Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
Saravia Navarro, David
Vegetation indices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Precision agricultura
Phenotyping
Remote sensing
Zea mays
Agricultura de precisión
Fenotipado
Teledetección
title_short Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
title_full Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
title_fullStr Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
title_full_unstemmed Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
title_sort Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
author Saravia Navarro, David
author_facet Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Zenaida Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Casas Diaz, Andrés V.
Arbizu Berrocal, Carlos Irvin
author_role author
author2 Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Zenaida Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Casas Diaz, Andrés V.
Arbizu Berrocal, Carlos Irvin
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Zenaida Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Casas Diaz, Andrés V.
Arbizu Berrocal, Carlos Irvin
dc.subject.en.fl_str_mv Vegetation indices
Precision farming
Hybrid
Phenotyping
Remote sensing
topic Vegetation indices
Precision farming
Hybrid
Phenotyping
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Precision agricultura
Phenotyping
Remote sensing
Zea mays
Agricultura de precisión
Fenotipado
Teledetección
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.en.fl_str_mv Precision agricultura
Phenotyping
Remote sensing
Zea mays
dc.subject.agrovoc.es_PE.fl_str_mv Agricultura de precisión
Fenotipado
Teledetección
description Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-06-05T17:55:30Z
dc.date.available.none.fl_str_mv 2023-06-05T17:55:30Z
dc.date.issued.fl_str_mv 2022-10-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.en.fl_str_mv Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630
dc.identifier.issn.none.fl_str_mv 2073-4395
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2200
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/agronomy12112630
identifier_str_mv Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630
2073-4395
url https://hdl.handle.net/20.500.12955/2200
https://doi.org/10.3390/agronomy12112630
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2073-4395
dc.relation.ispartofseries.en.fl_str_mv Agronomy
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.en.fl_str_mv MDPI
dc.publisher.country.none.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/b316b2bd-67c6-4fc6-9fdd-a2337ffff5f8/download
https://repositorio.inia.gob.pe/bitstreams/0b51d01c-abf3-4a71-8098-8120c8235bc5/download
https://repositorio.inia.gob.pe/bitstreams/33528738-8fc1-4c2e-a9c3-335c91034d7b/download
https://repositorio.inia.gob.pe/bitstreams/e98d0399-bcdf-4742-856c-93512771767a/download
bitstream.checksum.fl_str_mv 31bf40d6533bc753c2895c1f03d57b3c
8a4605be74aa9ea9d79846c1fba20a33
855a2a08a70c14eafae23fbbdeaec394
4df993f042917c144ccdb0aaae6c9642
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331631087157248
spelling Saravia Navarro, DavidSalazar Coronel, WilianValqui Valqui, LambertoQuille Mamani, Javier AlvaroPorras Jorge, Zenaida RossanaCorredor Arizapana, Flor AnitaBarboza Castillo, ElgarVásquez Pérez, Héctor VladimirCasas Diaz, Andrés V.Arbizu Berrocal, Carlos Irvin2023-06-05T17:55:30Z2023-06-05T17:55:30Z2022-10-26Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy121126302073-4395https://hdl.handle.net/20.500.12955/2200https://doi.org/10.3390/agronomy12112630Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.application/pdfengMDPICHurn:issn:2073-4395Agronomyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAVegetation indicesPrecision farmingHybridPhenotypingRemote sensinghttps://purl.org/pe-repo/ocde/ford#4.01.06Precision agriculturaPhenotypingRemote sensingZea maysAgricultura de precisiónFenotipadoTeledetecciónYield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peruinfo:eu-repo/semantics/article1211ORIGINALSaravia_et-al_2022_maize_yield.pdfSaravia_et-al_2022_maize_yield.pdfArticle (English)application/pdf3123674https://repositorio.inia.gob.pe/bitstreams/b316b2bd-67c6-4fc6-9fdd-a2337ffff5f8/download31bf40d6533bc753c2895c1f03d57b3cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/0b51d01c-abf3-4a71-8098-8120c8235bc5/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSaravia_et-al_2022_maize_yield.pdf.txtSaravia_et-al_2022_maize_yield.pdf.txtExtracted texttext/plain48164https://repositorio.inia.gob.pe/bitstreams/33528738-8fc1-4c2e-a9c3-335c91034d7b/download855a2a08a70c14eafae23fbbdeaec394MD53THUMBNAILSaravia_et-al_2022_maize_yield.pdf.jpgSaravia_et-al_2022_maize_yield.pdf.jpgGenerated Thumbnailimage/jpeg1631https://repositorio.inia.gob.pe/bitstreams/e98d0399-bcdf-4742-856c-93512771767a/download4df993f042917c144ccdb0aaae6c9642MD5420.500.12955/2200oai:repositorio.inia.gob.pe:20.500.12955/22002024-01-26 15:16:42.368https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.87115
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).