Self-tuning NMPC of an engine air path

Descripción del Articulo

Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control...

Descripción completa

Detalles Bibliográficos
Autores: Mendoza D., Schrangl P., Ipanaqué W., del Re L.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2619
Enlace del recurso:https://hdl.handle.net/20.500.12390/2619
https://doi.org/10.1016/j.ifacol.2020.12.899
Nivel de acceso:acceso abierto
Materia:System identification
Adaptive control
Automotive control
Predictive control
http://purl.org/pe-repo/ocde/ford#1.05.09
id CONC_6f03334ae33c8204f44fd39efb5d6efd
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2619
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Self-tuning NMPC of an engine air path
title Self-tuning NMPC of an engine air path
spellingShingle Self-tuning NMPC of an engine air path
Mendoza D.
System identification
Adaptive control
Automotive control
Predictive control
http://purl.org/pe-repo/ocde/ford#1.05.09
title_short Self-tuning NMPC of an engine air path
title_full Self-tuning NMPC of an engine air path
title_fullStr Self-tuning NMPC of an engine air path
title_full_unstemmed Self-tuning NMPC of an engine air path
title_sort Self-tuning NMPC of an engine air path
author Mendoza D.
author_facet Mendoza D.
Schrangl P.
Ipanaqué W.
del Re L.
author_role author
author2 Schrangl P.
Ipanaqué W.
del Re L.
author2_role author
author
author
dc.contributor.author.fl_str_mv Mendoza D.
Schrangl P.
Ipanaqué W.
del Re L.
dc.subject.none.fl_str_mv System identification
topic System identification
Adaptive control
Automotive control
Predictive control
http://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.es_PE.fl_str_mv Adaptive control
Automotive control
Predictive control
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.09
description Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2619
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ifacol.2020.12.899
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85105043963
url https://hdl.handle.net/20.500.12390/2619
https://doi.org/10.1016/j.ifacol.2020.12.899
identifier_str_mv 2-s2.0-85105043963
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv IFAC-PapersOnLine
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882997208154112
spelling Publicationrp06735600rp06733600rp06734600rp06732600Mendoza D.Schrangl P.Ipanaqué W.del Re L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2619https://doi.org/10.1016/j.ifacol.2020.12.8992-s2.0-85105043963Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND licenseConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier B.V.IFAC-PapersOnLineinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/System identificationAdaptive control-1Automotive control-1Predictive control-1http://purl.org/pe-repo/ocde/ford#1.05.09-1Self-tuning NMPC of an engine air pathinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2619oai:repositorio.concytec.gob.pe:20.500.12390/26192024-05-30 15:45:40.355https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8c4fafd6-3d36-485b-bd4a-931818bca760"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Self-tuning NMPC of an engine air path</Title> <PublishedIn> <Publication> <Title>IFAC-PapersOnLine</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.ifacol.2020.12.899</DOI> <SCP-Number>2-s2.0-85105043963</SCP-Number> <Authors> <Author> <DisplayName>Mendoza D.</DisplayName> <Person id="rp06735" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schrangl P.</DisplayName> <Person id="rp06733" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ipanaqué W.</DisplayName> <Person id="rp06734" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>del Re L.</DisplayName> <Person id="rp06732" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier B.V.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>System identification</Keyword> <Keyword>Adaptive control</Keyword> <Keyword>Automotive control</Keyword> <Keyword>Predictive control</Keyword> <Abstract>Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.413352
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).