Self-tuning NMPC of an engine air path
Descripción del Articulo
Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2619 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2619 https://doi.org/10.1016/j.ifacol.2020.12.899 |
| Nivel de acceso: | acceso abierto |
| Materia: | System identification Adaptive control Automotive control Predictive control http://purl.org/pe-repo/ocde/ford#1.05.09 |
| id |
CONC_6f03334ae33c8204f44fd39efb5d6efd |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2619 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Self-tuning NMPC of an engine air path |
| title |
Self-tuning NMPC of an engine air path |
| spellingShingle |
Self-tuning NMPC of an engine air path Mendoza D. System identification Adaptive control Automotive control Predictive control http://purl.org/pe-repo/ocde/ford#1.05.09 |
| title_short |
Self-tuning NMPC of an engine air path |
| title_full |
Self-tuning NMPC of an engine air path |
| title_fullStr |
Self-tuning NMPC of an engine air path |
| title_full_unstemmed |
Self-tuning NMPC of an engine air path |
| title_sort |
Self-tuning NMPC of an engine air path |
| author |
Mendoza D. |
| author_facet |
Mendoza D. Schrangl P. Ipanaqué W. del Re L. |
| author_role |
author |
| author2 |
Schrangl P. Ipanaqué W. del Re L. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Mendoza D. Schrangl P. Ipanaqué W. del Re L. |
| dc.subject.none.fl_str_mv |
System identification |
| topic |
System identification Adaptive control Automotive control Predictive control http://purl.org/pe-repo/ocde/ford#1.05.09 |
| dc.subject.es_PE.fl_str_mv |
Adaptive control Automotive control Predictive control |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.09 |
| description |
Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2619 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.ifacol.2020.12.899 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85105043963 |
| url |
https://hdl.handle.net/20.500.12390/2619 https://doi.org/10.1016/j.ifacol.2020.12.899 |
| identifier_str_mv |
2-s2.0-85105043963 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
IFAC-PapersOnLine |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844882997208154112 |
| spelling |
Publicationrp06735600rp06733600rp06734600rp06732600Mendoza D.Schrangl P.Ipanaqué W.del Re L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2619https://doi.org/10.1016/j.ifacol.2020.12.8992-s2.0-85105043963Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND licenseConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier B.V.IFAC-PapersOnLineinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/System identificationAdaptive control-1Automotive control-1Predictive control-1http://purl.org/pe-repo/ocde/ford#1.05.09-1Self-tuning NMPC of an engine air pathinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2619oai:repositorio.concytec.gob.pe:20.500.12390/26192024-05-30 15:45:40.355https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8c4fafd6-3d36-485b-bd4a-931818bca760"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Self-tuning NMPC of an engine air path</Title> <PublishedIn> <Publication> <Title>IFAC-PapersOnLine</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.ifacol.2020.12.899</DOI> <SCP-Number>2-s2.0-85105043963</SCP-Number> <Authors> <Author> <DisplayName>Mendoza D.</DisplayName> <Person id="rp06735" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schrangl P.</DisplayName> <Person id="rp06733" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ipanaqué W.</DisplayName> <Person id="rp06734" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>del Re L.</DisplayName> <Person id="rp06732" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier B.V.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>System identification</Keyword> <Keyword>Adaptive control</Keyword> <Keyword>Automotive control</Keyword> <Keyword>Predictive control</Keyword> <Abstract>Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).