Simulation of the model predictive control applied to a combined cycle plant

Descripción del Articulo

We present the simulation of the application of the Model-based Predictive Control (MPC) of the drum level in a Combined Cycle Plant in order to minimize the time for reaching the highest capacity of plant, around 225 MW. In contrast to others control techniques, our simulation yields that the MPC h...

Descripción completa

Detalles Bibliográficos
Autores: Nieto Chaupis, Huber, Del Carpio Salinas, Jorge
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/366
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/366
https://ieeexplore.ieee.org/document/7836243
http://dx.doi.org/10.1109/ANDESCON.2016.7836243
Nivel de acceso:acceso embargado
Materia:Combined cycle power plants
Plant startup
Predictive control systems
Combined cycle plant
Control techniques
Drum Level
Expected power
Industrial processs
Model based predictive control
Reference functions
Model predictive control
Descripción
Sumario:We present the simulation of the application of the Model-based Predictive Control (MPC) of the drum level in a Combined Cycle Plant in order to minimize the time for reaching the highest capacity of plant, around 225 MW. In contrast to others control techniques, our simulation yields that the MPC has shown capabilities as to reach its expected power in about 40 minutes before than PID, time which normally takes the whole industrial process under this control. In the present study, we have tested up to three different reference functions in order to compare performance during the drum level control. According to the simulations, the MPC working together with these reference functions is seen to be promising in the sense of providing efficiency to the plant from the startup until the time when system is reaching 225 MW. We have also calculated a minor discrepancy of order of lees than 5%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).