Prospects of model predictive control of the drum level at a 225 MW combined cycle power plant

Descripción del Articulo

We report the application of the Model-based Predictive Control (MPC) to improve the performance of the start-up of a 150-175 MW combined cycle power plant whose gas turbine is fueled by natural gas. In concrete the simulations have shown that the efficient drum level control is reflected on the imp...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/370
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/370
https://ieeexplore.ieee.org/document/7750860
http://dx.doi.org/10.1109/ETCM.2016.7750860
Nivel de acceso:acceso embargado
Materia:Combined cycle power plants
Convolution
Gas turbines
MIMO systems
Model predictive control
Combined cycle
Computational error
Convolution integrals
Convolution model
Drum Level
Expected power
Improvement of power efficiencies
Model based predictive control
Predictive control systems
Descripción
Sumario:We report the application of the Model-based Predictive Control (MPC) to improve the performance of the start-up of a 150-175 MW combined cycle power plant whose gas turbine is fueled by natural gas. In concrete the simulations have shown that the efficient drum level control is reflected on the improvement of power efficiency in the sense of reaching the 225 MW set point in around 45 minutes faster than the case of PID. Experimental data taken from ordinary runs from power plant was used for ends of system identification which is based on convolution integrals resulting well adjustable to the acquired data. Simulations have demonstrated that the performance of the MPC surpasses to the one of classic PID essentially in two aspects: (i) reducing the time for reaching set point and (ii) avoiding unexpected critical situations during the plant start-up. Results have indicated that the MPC might reduce in up to 45±5 minutes the time of reaching the set point established to be 225MWwithin a computational error of 5%, which is translated as the MPC error of order of 2.5% working as software in plant. All these results might sustain the fact that the MPC based on convolution models appears to be an interesting scheme to optimize the full functionality in power plants whose expected power is ranging between 200 and 250 MW.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).