Machine Learning Analysis for Cervical Cancer Prediction, a Systematic Review of the Literature

Descripción del Articulo

At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez-Espinoza, Sandy, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1754
Enlace del recurso:https://hdl.handle.net/20.500.13067/1754
https://doi.org/10.1109/EHB52898.2021.9657567
Nivel de acceso:acceso restringido
Materia:Systematics
Asia
Machine learning
Sensitivity and specificity
Predictive models
Mathematical models
Convolutional neural networks
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:At present, cervical cancer is still the most complex issue due to the fact that people who suffer from it have a high risk of death. Therefore, it is very important to have an early diagnosis. The present study is a review of the scientific literature, which includes 50 articles from the following databases: ProQuest, IEEE Xplore, PubMed, ScienceDirect, Springer, IopScience and Scopus. Thus, showing that the research that has been developed with machine learning facilitates the control, follow-up and monitoring of the disease. The systematic review shows that the model that had the highest accuracy is Convolutional Neural Network and the most used tool is R Studio, these two factors are determinant in cervical cancer, according to the research conducted with 50 articles, where more research on this topic was recorded is the continent of Asia and specifically in the countries of India and China.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).