Self-tuning NMPC of an engine air path

Descripción del Articulo

Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control...

Descripción completa

Detalles Bibliográficos
Autores: Mendoza D., Schrangl P., Ipanaqué W., del Re L.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2619
Enlace del recurso:https://hdl.handle.net/20.500.12390/2619
https://doi.org/10.1016/j.ifacol.2020.12.899
Nivel de acceso:acceso abierto
Materia:System identification
Adaptive control
Automotive control
Predictive control
http://purl.org/pe-repo/ocde/ford#1.05.09
Descripción
Sumario:Many automotive systems such as engines have manufacturing tolerances or change over time. This limits the performance of controllers tuned for the nominal case. A robust controller can not always overcome this performance gap. Against this background, in this work, we propose a self-tuning control strategy for an engine air path model obtained from data of a real engine and show its benefits setting. The self-tuning control consists of an online parameter estimation algorithm for polynomial non-linear autoregressive with exogenous input (PNARX) models and a nonlinear model predictive controller (NMPC) implemented by the continuation/generalized minimum residual (C/GMRES) algorithm. In a first step design of experiments (DOE) is utilized to identify a PNARX model offline from measurements performed on an engine test bed. A tracking NMPC is designed for this model and applied in simulation on the identified model. The control performance is assessed for the case of a wrong initial guess. It is shown that the resulting performance gap can be overcome by the online parameter estimation of a k-step prediction model with directional forgetting. An improved closed loop control performance of the air path model confirms the approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).