Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms

Descripción del Articulo

Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect pattern...

Descripción completa

Detalles Bibliográficos
Autores: Guevara-Ponce, Victor, Roque-Paredes, Ofelia, Zerga-Morales, Carlos, Flores-Huerta, Andrea, Aymerich-Lau, Mario, Iparraguirre-Villanueva, Orlando
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2877
Enlace del recurso:https://hdl.handle.net/20.500.13067/2877
https://doi.org/10.14569/IJACSA.2023.0140661
Nivel de acceso:acceso abierto
Materia:Convolutional neural networks
Transfer learning
Deep learning
Classification
Breast cancer
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_5c6e0204734b6b9fc58ab8c5ceb2c311
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2877
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Guevara-Ponce, VictorRoque-Paredes, OfeliaZerga-Morales, CarlosFlores-Huerta, AndreaAymerich-Lau, MarioIparraguirre-Villanueva, Orlando2023-12-20T16:12:38Z2023-12-20T16:12:38Z2023https://hdl.handle.net/20.500.13067/2877International Journal of Advanced Computer Science and Applications (IJACSA)https://doi.org/10.14569/IJACSA.2023.0140661Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect patterns of behavior with respect to patients who have been found to have some type of cancer. This work aims to identify and classify breast cancer using deep learning models and convolutional neural networks (CNN) with transfer learning. For the breast cancer detection process, 7803 real images with benign and malignant labels were used, which were provided by BreaKHis on the Kaggle platform. The convolutional basis (parameters) of pre-trained models VGG16, VGG19, Resnet-50 and Inception-V3 were used. The TensorFlow framework, keras and Python libraries were also used to retrain the parameters of the models proposed for this study. Metrics such as accuracy, error ratio, precision, recall and f1-score were used to evaluate the models. The results show that the models based on VGG16, VGG19 ResNet-50 and Inception-V3 obtain an accuracy of 88%, 86%, 97% and 96% respectively, recall of 84%, 82%, 96% and 96% respectively, in addition to f1-score of 86%, 83%, 96% and 95% respectively. It is concluded that the model that shows the best results is Resnet-50, obtaining high results in all the metrics considered, although it should be noted that the Inception-V3 model achieves very similar results in relation to Resnet-50, in all the metrics. In addition, these two models exceed the 95% threshold of correct results.application/pdfengSAI The Science and Information Organizationinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Convolutional neural networksTransfer learningDeep learningClassificationBreast cancerhttps://purl.org/pe-repo/ocde/ford#2.02.04Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanismsinfo:eu-repo/semantics/article146574580reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL44_2023.pdf44_2023.pdfArtículoapplication/pdf918525http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/1/44_2023.pdfab6145d1b46a1976f435662598c1c51bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT44_2023.pdf.txt44_2023.pdf.txtExtracted texttext/plain31807http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/3/44_2023.pdf.txt88e23bc66c8e5b29a55f268cfcc5e0a6MD53THUMBNAIL44_2023.pdf.jpg44_2023.pdf.jpgGenerated Thumbnailimage/jpeg8467http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/4/44_2023.pdf.jpg9962e4d8c2e35c98516a259616cf223cMD5420.500.13067/2877oai:repositorio.autonoma.edu.pe:20.500.13067/28772023-12-21 03:00:42.617Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
title Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
spellingShingle Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
Guevara-Ponce, Victor
Convolutional neural networks
Transfer learning
Deep learning
Classification
Breast cancer
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
title_full Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
title_fullStr Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
title_full_unstemmed Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
title_sort Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
author Guevara-Ponce, Victor
author_facet Guevara-Ponce, Victor
Roque-Paredes, Ofelia
Zerga-Morales, Carlos
Flores-Huerta, Andrea
Aymerich-Lau, Mario
Iparraguirre-Villanueva, Orlando
author_role author
author2 Roque-Paredes, Ofelia
Zerga-Morales, Carlos
Flores-Huerta, Andrea
Aymerich-Lau, Mario
Iparraguirre-Villanueva, Orlando
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Guevara-Ponce, Victor
Roque-Paredes, Ofelia
Zerga-Morales, Carlos
Flores-Huerta, Andrea
Aymerich-Lau, Mario
Iparraguirre-Villanueva, Orlando
dc.subject.es_PE.fl_str_mv Convolutional neural networks
Transfer learning
Deep learning
Classification
Breast cancer
topic Convolutional neural networks
Transfer learning
Deep learning
Classification
Breast cancer
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect patterns of behavior with respect to patients who have been found to have some type of cancer. This work aims to identify and classify breast cancer using deep learning models and convolutional neural networks (CNN) with transfer learning. For the breast cancer detection process, 7803 real images with benign and malignant labels were used, which were provided by BreaKHis on the Kaggle platform. The convolutional basis (parameters) of pre-trained models VGG16, VGG19, Resnet-50 and Inception-V3 were used. The TensorFlow framework, keras and Python libraries were also used to retrain the parameters of the models proposed for this study. Metrics such as accuracy, error ratio, precision, recall and f1-score were used to evaluate the models. The results show that the models based on VGG16, VGG19 ResNet-50 and Inception-V3 obtain an accuracy of 88%, 86%, 97% and 96% respectively, recall of 84%, 82%, 96% and 96% respectively, in addition to f1-score of 86%, 83%, 96% and 95% respectively. It is concluded that the model that shows the best results is Resnet-50, obtaining high results in all the metrics considered, although it should be noted that the Inception-V3 model achieves very similar results in relation to Resnet-50, in all the metrics. In addition, these two models exceed the 95% threshold of correct results.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-20T16:12:38Z
dc.date.available.none.fl_str_mv 2023-12-20T16:12:38Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2877
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications (IJACSA)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2023.0140661
url https://hdl.handle.net/20.500.13067/2877
https://doi.org/10.14569/IJACSA.2023.0140661
identifier_str_mv International Journal of Advanced Computer Science and Applications (IJACSA)
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv SAI The Science and Information Organization
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 14
dc.source.issue.es_PE.fl_str_mv 6
dc.source.beginpage.es_PE.fl_str_mv 574
dc.source.endpage.es_PE.fl_str_mv 580
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/1/44_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/3/44_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/4/44_2023.pdf.jpg
bitstream.checksum.fl_str_mv ab6145d1b46a1976f435662598c1c51b
9243398ff393db1861c890baeaeee5f9
88e23bc66c8e5b29a55f268cfcc5e0a6
9962e4d8c2e35c98516a259616cf223c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915410080268288
score 13.897231
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).