Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms
Descripción del Articulo
Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect pattern...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2877 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/2877 https://doi.org/10.14569/IJACSA.2023.0140661 |
| Nivel de acceso: | acceso abierto |
| Materia: | Convolutional neural networks Transfer learning Deep learning Classification Breast cancer https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_5c6e0204734b6b9fc58ab8c5ceb2c311 |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2877 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Guevara-Ponce, VictorRoque-Paredes, OfeliaZerga-Morales, CarlosFlores-Huerta, AndreaAymerich-Lau, MarioIparraguirre-Villanueva, Orlando2023-12-20T16:12:38Z2023-12-20T16:12:38Z2023https://hdl.handle.net/20.500.13067/2877International Journal of Advanced Computer Science and Applications (IJACSA)https://doi.org/10.14569/IJACSA.2023.0140661Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect patterns of behavior with respect to patients who have been found to have some type of cancer. This work aims to identify and classify breast cancer using deep learning models and convolutional neural networks (CNN) with transfer learning. For the breast cancer detection process, 7803 real images with benign and malignant labels were used, which were provided by BreaKHis on the Kaggle platform. The convolutional basis (parameters) of pre-trained models VGG16, VGG19, Resnet-50 and Inception-V3 were used. The TensorFlow framework, keras and Python libraries were also used to retrain the parameters of the models proposed for this study. Metrics such as accuracy, error ratio, precision, recall and f1-score were used to evaluate the models. The results show that the models based on VGG16, VGG19 ResNet-50 and Inception-V3 obtain an accuracy of 88%, 86%, 97% and 96% respectively, recall of 84%, 82%, 96% and 96% respectively, in addition to f1-score of 86%, 83%, 96% and 95% respectively. It is concluded that the model that shows the best results is Resnet-50, obtaining high results in all the metrics considered, although it should be noted that the Inception-V3 model achieves very similar results in relation to Resnet-50, in all the metrics. In addition, these two models exceed the 95% threshold of correct results.application/pdfengSAI The Science and Information Organizationinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Convolutional neural networksTransfer learningDeep learningClassificationBreast cancerhttps://purl.org/pe-repo/ocde/ford#2.02.04Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanismsinfo:eu-repo/semantics/article146574580reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL44_2023.pdf44_2023.pdfArtículoapplication/pdf918525http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/1/44_2023.pdfab6145d1b46a1976f435662598c1c51bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT44_2023.pdf.txt44_2023.pdf.txtExtracted texttext/plain31807http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/3/44_2023.pdf.txt88e23bc66c8e5b29a55f268cfcc5e0a6MD53THUMBNAIL44_2023.pdf.jpg44_2023.pdf.jpgGenerated Thumbnailimage/jpeg8467http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/4/44_2023.pdf.jpg9962e4d8c2e35c98516a259616cf223cMD5420.500.13067/2877oai:repositorio.autonoma.edu.pe:20.500.13067/28772023-12-21 03:00:42.617Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
| dc.title.es_PE.fl_str_mv |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| title |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| spellingShingle |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms Guevara-Ponce, Victor Convolutional neural networks Transfer learning Deep learning Classification Breast cancer https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| title_full |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| title_fullStr |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| title_full_unstemmed |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| title_sort |
Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms |
| author |
Guevara-Ponce, Victor |
| author_facet |
Guevara-Ponce, Victor Roque-Paredes, Ofelia Zerga-Morales, Carlos Flores-Huerta, Andrea Aymerich-Lau, Mario Iparraguirre-Villanueva, Orlando |
| author_role |
author |
| author2 |
Roque-Paredes, Ofelia Zerga-Morales, Carlos Flores-Huerta, Andrea Aymerich-Lau, Mario Iparraguirre-Villanueva, Orlando |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Guevara-Ponce, Victor Roque-Paredes, Ofelia Zerga-Morales, Carlos Flores-Huerta, Andrea Aymerich-Lau, Mario Iparraguirre-Villanueva, Orlando |
| dc.subject.es_PE.fl_str_mv |
Convolutional neural networks Transfer learning Deep learning Classification Breast cancer |
| topic |
Convolutional neural networks Transfer learning Deep learning Classification Breast cancer https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect patterns of behavior with respect to patients who have been found to have some type of cancer. This work aims to identify and classify breast cancer using deep learning models and convolutional neural networks (CNN) with transfer learning. For the breast cancer detection process, 7803 real images with benign and malignant labels were used, which were provided by BreaKHis on the Kaggle platform. The convolutional basis (parameters) of pre-trained models VGG16, VGG19, Resnet-50 and Inception-V3 were used. The TensorFlow framework, keras and Python libraries were also used to retrain the parameters of the models proposed for this study. Metrics such as accuracy, error ratio, precision, recall and f1-score were used to evaluate the models. The results show that the models based on VGG16, VGG19 ResNet-50 and Inception-V3 obtain an accuracy of 88%, 86%, 97% and 96% respectively, recall of 84%, 82%, 96% and 96% respectively, in addition to f1-score of 86%, 83%, 96% and 95% respectively. It is concluded that the model that shows the best results is Resnet-50, obtaining high results in all the metrics considered, although it should be noted that the Inception-V3 model achieves very similar results in relation to Resnet-50, in all the metrics. In addition, these two models exceed the 95% threshold of correct results. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-12-20T16:12:38Z |
| dc.date.available.none.fl_str_mv |
2023-12-20T16:12:38Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2877 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications (IJACSA) |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2023.0140661 |
| url |
https://hdl.handle.net/20.500.13067/2877 https://doi.org/10.14569/IJACSA.2023.0140661 |
| identifier_str_mv |
International Journal of Advanced Computer Science and Applications (IJACSA) |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
SAI The Science and Information Organization |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.volume.es_PE.fl_str_mv |
14 |
| dc.source.issue.es_PE.fl_str_mv |
6 |
| dc.source.beginpage.es_PE.fl_str_mv |
574 |
| dc.source.endpage.es_PE.fl_str_mv |
580 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/1/44_2023.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/3/44_2023.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2877/4/44_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
ab6145d1b46a1976f435662598c1c51b 9243398ff393db1861c890baeaeee5f9 88e23bc66c8e5b29a55f268cfcc5e0a6 9962e4d8c2e35c98516a259616cf223c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1835915410080268288 |
| score |
13.897231 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).