NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †

Descripción del Articulo

Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity...

Descripción completa

Detalles Bibliográficos
Autores: Ingaroca-Torres, Andreluis, Heredia-Moscoso, Lucía, Aures-García, Alvaro
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/684677
Enlace del recurso:http://hdl.handle.net/10757/684677
Nivel de acceso:acceso abierto
Materia:convolutional neural networks
deep learning
dysplastic nevus
image classification
melanoma
skin cancer
skin lesion
Descripción
Sumario:Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity to extract features and classify objects. Therefore, the research aims to develop a model to diagnose dysplastic nevi using a deep learning network whose classification is based on the pre-trained architecture EfficientNet-B7, which was selected for its high classification accuracy and low computational complexity. As for the results obtained, an accuracy of 78.33% was achieved in the classification model. Also, the degree of similarity between the detection by a dermatology expert and the proposed model reached an accuracy of 79.69%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).