1
artículo
Publicado 2023
Enlace
Enlace
The following article proposes the design of a bi-centrifugal atomizer that allows the interaction of sprays from two fluids (water and liquid nitrogen). The liquid nitrogen (LN2) is below −195.8 °C, a temperature low enough for the nitrogen, upon contact with the atomized water, to cause heat loss and bring it to its freezing point. The objective is to convert the water droplets present in the spray into ice. Upon falling, the ice particles can be dispersed, covering the largest possible area of the seafood products intended for cold preservation. All these phenomena related to the interaction of two fluids and heat exchange are due to the bi-centrifugal atomizer, which positions the two centrifugal atomizers concentrically, resulting in the inevitable collision of the two sprays. Each of these atomizers will be designed using a mathematical model and CFDs tools. The latter will prov...
2
artículo
Numerical Simulation and Design of a Mechanical Structure of an Ankle Exoskeleton for Elderly People
Publicado 2024
Enlace
Enlace
This article presents the numerical simulation and design of an ankle exoskeleton oriented to elderly users. For the design, anatomical measurements were taken from a user of this age group to obtain an ergonomic, resistant, and exceptionally reliable mechanical structure. In addition, the design was validated to support a “weight range” of users between 50 and 80 kg in order to evaluate the reaction of the mechanism within the range of loads generated in relation to the first principal stress, the safety coefficient, the Von Mises stress, and principal deformations, for which the 3D CAD software Autodesk Inventor and theoretical correlations were used to calculate the displacement and rotation angles of the ankle in the structure. Likewise, two types of materials were evaluated: ABS (acrylonitrile butadiene styrene) and a polymer reinforced with carbon fiber. Finally, the designed p...
3
artículo
Publicado 2023
Enlace
Enlace
This study delves into the examination of internal flow characteristics within closed (with nozzles) and open-end pressure-swirl atomizers (lacking nozzles). The number of inlet channels “n” and the opening parameter “C” were manipulated in this study, as they play a pivotal role in understanding various atomizer attributes, such as uniformity of the air-core diameter, the discharge coefficient, spray angle, and more, all of which hold significance in the design of bipropellant atomizers for liquid rocket engines (LREs). To validate our findings, six distinct hexahedral meshes were generated using Ansys ICEM software 2023. Subsequently, we employed Ansys Fluent, considering the RNG k-ε turbulence model and the VOF (volume-of-fluid) multiphase model to identify the liquid–gas interface, to aid in analyzing the uniformity of the air core, which is directly linked to the even dis...
4
artículo
Publicado 2025
Enlace
Enlace
The present article delves into the comprehensive study of internal flow dynamics within a cryogenic chamber used for freezing food with high water percent. For cryogenic freezing is necessary to reduce temperature extremely and maintain a uniform distribution, different behaviours may cause structural damages on food. This is because the chamber comprises a circular-sectioned tunnel or chamber coupled with a set of Jet-type atomizers for the injection of liquid nitrogen. The internal flow, predominantly consisting of liquid nitrogen, necessitates prolonged residency within the chamber to uniformly and effectively cool or freeze food traversing its interior. Consequently, the primary aim is to extend the cryogenic fluid's residence time, achieved by strategically decelerating the flow. This deceleration is orchestrated through the strategic injection of the fluid to induce a swirling or ...
5
artículo
Publicado 2024
Enlace
Enlace
This article addresses the study of internal flow dynamics within a cryogenic chamber designed for freezing food using liquid nitrogen injection. The chamber features a circular section with strategically placed jet-type atomizers for this purpose. The primary objective is to extend the residence time of the cryogenic fluid within the chamber to ensure uniform and effective freezing of the passing food items. This is achieved by inducing a swirl effect through strategic deceleration of the flow using the atomizers. The meticulous placement of these atomizers at periodic intervals along the internal walls of the cylindrical chamber ensures prolonged recirculation of the internal flow. Internal temperature analysis is crucial to ensure the freezing process. The study is supported by numerical analysis in CFD ANSYS to assess the dynamics of the swirl effect and parameters associated with th...