Study of Internal Flow in a Liquid Nitrogen Flow Decelerator Through Swirl Effect Consisting of a Jet-Type Cryogenic Injection System for Food Freezing

Descripción del Articulo

This article addresses the study of internal flow dynamics within a cryogenic chamber designed for freezing food using liquid nitrogen injection. The chamber features a circular section with strategically placed jet-type atomizers for this purpose. The primary objective is to extend the residence ti...

Descripción completa

Detalles Bibliográficos
Autores: Arriaga, Ian, Sayán, Jasuo, Ronceros, Julio, Klusmann, Mirko, ALBATRINO, RENZO, Raymundo, Carlos, Zapata, Gianpierre, Ronceros, Gustavo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/683808
Enlace del recurso:http://hdl.handle.net/10757/683808
Nivel de acceso:acceso embargado
Materia:ANSYS Fluent
ANSYS ICEM
CFD
cryogenic decelerator chamber
jet-type atomizer
liquid nitrogen
multiphases VOF
RNG k-ϵ turbulent model
swirl angle
swirl effect
Descripción
Sumario:This article addresses the study of internal flow dynamics within a cryogenic chamber designed for freezing food using liquid nitrogen injection. The chamber features a circular section with strategically placed jet-type atomizers for this purpose. The primary objective is to extend the residence time of the cryogenic fluid within the chamber to ensure uniform and effective freezing of the passing food items. This is achieved by inducing a swirl effect through strategic deceleration of the flow using the atomizers. The meticulous placement of these atomizers at periodic intervals along the internal walls of the cylindrical chamber ensures prolonged recirculation of the internal flow. Internal temperature analysis is crucial to ensure the freezing process. The study is supported by numerical analysis in CFD ANSYS to assess the dynamics of the swirl effect and parameters associated with the nitrogen–air interface, from which we obtain a sophisticated analysis thanks to the design of a hexahedral mesh made in greater detail in ICEM CFD. This approach aims to understand internal flow behavior and its correlation with the complexity of cryogenic system design, utilizing variable nitrogen-injection pressures and strategic atomizer placement as fundamental parameters to optimize system design.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).