1
artículo
Publicado 2012
Enlace
Enlace
Neutrino interaction events in the detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.
2
artículo
Publicado 2012
Enlace
Enlace
Neutrino interaction events in the MINERνA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the users browser window using the draft HTML 5 "standard". These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERνA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education. © 2012 Published by Elsevier B.V.
3
artículo
Publicado 2013
Enlace
Enlace
This work was supported by the Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP, and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF) and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and detector.
4
artículo
Publicado 2013
Enlace
Enlace
This work was supported by the Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundatation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP, and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF), and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and the detector.
5
artículo
Publicado 2012
Enlace
Enlace
Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0.1 bits/sec with a bit error rate of 1% over a distance of 1.035 km, including 240 m of earth.