Mostrando 1 - 10 Resultados de 10 Para Buscar 'Butkevich A.', tiempo de consulta: 0.03s Limitar resultados
1
artículo
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359, which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF), and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and the detector.
2
artículo
A study of charged-current muon neutrino scattering on hydrocarbon (CH) in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70◦ and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well-described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multi-nucleon co...
3
artículo
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF), by the Swiss National Science Foundation, and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and detector.
4
artículo
Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. The differential cross sections for momentum and production angle, for events with a single observed and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the kinematics for this process.
5
artículo
This work was supported by the Fermi National Accelerator Laboratory under the U.S. Department of Energy (DOE) Award No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by the NSF and DOE (USA); CAPES and CNPq (Brazil); CoNaCyT (Mexico); CONICYT (Chile); CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru); Latin American Center for Physics (CLAF); the Swiss National Science Foundation; and RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and detector.
6
artículo
This work was supported by the Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP, and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF) and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and detector.
7
artículo
The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINE...
8
artículo
This work was supported by the Fermi National Accelerator Laboratory under United States Department of Energy (DOE) Office of High Energy Physics Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundatation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP, and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF), and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and the detector.
9
artículo
Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0.1 bits/sec with a bit error rate of 1% over a distance of 1.035 km, including 240 m of earth.
10
artículo
The skin is the largest organ of the body that protects it from the external environment. High- frequency ultra sound (HF-US) has been used to visualize the skin in depth and to diagnose some pathologies in dermatological applications. Quantitative ultrasound (QUS) includes several techniques that provide values of particular physical properties. In this thesis work, three QUS parameters are explained and used to characterize healthy skin through HF-US: attenuation coefficient slope (ACS), backscatter coefficient (BSC) and shear wave speed (SWS). They were estimated with the regularized spectral-log difference (RSLD) method, the reference phan- tom method, and the crawling wave sonoelastography method, respectively. All the three parameters were assessed in phantoms, ex vivo and in vivo skin. In calibrated phantoms, RSLD showed a reduc- tion of up to 93% of the standard deviation concern...