“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
Descripción del Articulo
“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for stude...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/9419 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/9419 |
Nivel de acceso: | acceso abierto |
Materia: | "Machine learning; adaptability; students; online education; prediction; model" 1.02.00 -- Informática y Ciencias de la Información |
id |
UWIE_e86c5097faa97ddf4f22bf9a21fe79ff |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/9419 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_PE.fl_str_mv |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
title |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
spellingShingle |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ Iparraguirre-Villanueva, Orlando "Machine learning; adaptability; students; online education; prediction; model" 1.02.00 -- Informática y Ciencias de la Información |
title_short |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
title_full |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
title_fullStr |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
title_full_unstemmed |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
title_sort |
“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“ |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Torres-Ceclén, Carmen Epifanía-Huerta, Andrés Castro-Leon, Gloria Melgarejo-Graciano, Melquiades Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Torres-Ceclén, Carmen Epifanía-Huerta, Andrés Castro-Leon, Gloria Melgarejo-Graciano, Melquiades Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Torres-Ceclén, Carmen Epifanía-Huerta, Andrés Castro-Leon, Gloria Melgarejo-Graciano, Melquiades Zapata-Paulini, Joselyn Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
"Machine learning; adaptability; students; online education; prediction; model" |
topic |
"Machine learning; adaptability; students; online education; prediction; model" 1.02.00 -- Informática y Ciencias de la Información |
dc.subject.ocde.es_PE.fl_str_mv |
1.02.00 -- Informática y Ciencias de la Información |
description |
“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “ |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-21T15:59:16Z |
dc.date.available.none.fl_str_mv |
2023-09-21T15:59:16Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/9419 |
dc.identifier.doi.none.fl_str_mv |
10.14569/IJACSA.2023.0140455 |
url |
https://hdl.handle.net/20.500.13053/9419 |
identifier_str_mv |
10.14569/IJACSA.2023.0140455 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
GBR |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/a765ff83-fa7c-4f52-9dba-abeb61a2d178/download https://dspace-uwiener.metabuscador.org/bitstreams/695370bf-f46d-4aab-bc16-b7b267803945/download https://dspace-uwiener.metabuscador.org/bitstreams/12fec7e6-c23b-4c9c-8b82-e6a680d039a4/download https://dspace-uwiener.metabuscador.org/bitstreams/32880cce-b08e-4ea5-bd72-8fbd8871e506/download |
bitstream.checksum.fl_str_mv |
ffcbb8229a2d741a7794d8b1395727b2 45a32df4acc7d471f03268af83c4637a 8a4605be74aa9ea9d79846c1fba20a33 b19ebff3f643b3c6babad70caece3b34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828958048813056 |
spelling |
Iparraguirre-Villanueva, OrlandoTorres-Ceclén, CarmenEpifanía-Huerta, AndrésCastro-Leon, GloriaMelgarejo-Graciano, MelquiadesZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-09-21T15:59:16Z2023-09-21T15:59:16Z2023https://hdl.handle.net/20.500.13053/941910.14569/IJACSA.2023.0140455“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “application/pdfengScience and Information OrganizationGBRinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"Machine learning; adaptability; students; online education; prediction; model"1.02.00 -- Informática y Ciencias de la Información“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationTEXTPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.txtPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.txtExtracted texttext/plain47283https://dspace-uwiener.metabuscador.org/bitstreams/a765ff83-fa7c-4f52-9dba-abeb61a2d178/downloadffcbb8229a2d741a7794d8b1395727b2MD53THUMBNAILPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.jpgPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.jpgGenerated Thumbnailimage/jpeg14051https://dspace-uwiener.metabuscador.org/bitstreams/695370bf-f46d-4aab-bc16-b7b267803945/download45a32df4acc7d471f03268af83c4637aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/12fec7e6-c23b-4c9c-8b82-e6a680d039a4/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdfPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdfapplication/pdf909923https://dspace-uwiener.metabuscador.org/bitstreams/32880cce-b08e-4ea5-bd72-8fbd8871e506/downloadb19ebff3f643b3c6babad70caece3b34MD5120.500.13053/9419oai:dspace-uwiener.metabuscador.org:20.500.13053/94192024-12-13 14:16:39.872https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).