“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“

Descripción del Articulo

“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for stude...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Torres-Ceclén, Carmen, Epifanía-Huerta, Andrés, Castro-Leon, Gloria, Melgarejo-Graciano, Melquiades, Zapata-Paulini, Joselyn, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/9419
Enlace del recurso:https://hdl.handle.net/20.500.13053/9419
Nivel de acceso:acceso abierto
Materia:"Machine learning; adaptability; students; online education; prediction; model"
1.02.00 -- Informática y Ciencias de la Información
id UWIE_e86c5097faa97ddf4f22bf9a21fe79ff
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/9419
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_PE.fl_str_mv “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
title “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
spellingShingle “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
Iparraguirre-Villanueva, Orlando
"Machine learning; adaptability; students; online education; prediction; model"
1.02.00 -- Informática y Ciencias de la Información
title_short “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
title_full “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
title_fullStr “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
title_full_unstemmed “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
title_sort “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Torres-Ceclén, Carmen
Epifanía-Huerta, Andrés
Castro-Leon, Gloria
Melgarejo-Graciano, Melquiades
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author_role author
author2 Torres-Ceclén, Carmen
Epifanía-Huerta, Andrés
Castro-Leon, Gloria
Melgarejo-Graciano, Melquiades
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Torres-Ceclén, Carmen
Epifanía-Huerta, Andrés
Castro-Leon, Gloria
Melgarejo-Graciano, Melquiades
Zapata-Paulini, Joselyn
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv "Machine learning; adaptability; students; online education; prediction; model"
topic "Machine learning; adaptability; students; online education; prediction; model"
1.02.00 -- Informática y Ciencias de la Información
dc.subject.ocde.es_PE.fl_str_mv 1.02.00 -- Informática y Ciencias de la Información
description “With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-21T15:59:16Z
dc.date.available.none.fl_str_mv 2023-09-21T15:59:16Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/9419
dc.identifier.doi.none.fl_str_mv 10.14569/IJACSA.2023.0140455
url https://hdl.handle.net/20.500.13053/9419
identifier_str_mv 10.14569/IJACSA.2023.0140455
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv GBR
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/a765ff83-fa7c-4f52-9dba-abeb61a2d178/download
https://dspace-uwiener.metabuscador.org/bitstreams/695370bf-f46d-4aab-bc16-b7b267803945/download
https://dspace-uwiener.metabuscador.org/bitstreams/12fec7e6-c23b-4c9c-8b82-e6a680d039a4/download
https://dspace-uwiener.metabuscador.org/bitstreams/32880cce-b08e-4ea5-bd72-8fbd8871e506/download
bitstream.checksum.fl_str_mv ffcbb8229a2d741a7794d8b1395727b2
45a32df4acc7d471f03268af83c4637a
8a4605be74aa9ea9d79846c1fba20a33
b19ebff3f643b3c6babad70caece3b34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828958048813056
spelling Iparraguirre-Villanueva, OrlandoTorres-Ceclén, CarmenEpifanía-Huerta, AndrésCastro-Leon, GloriaMelgarejo-Graciano, MelquiadesZapata-Paulini, JoselynCabanillas-Carbonell, Michael2023-09-21T15:59:16Z2023-09-21T15:59:16Z2023https://hdl.handle.net/20.500.13053/941910.14569/IJACSA.2023.0140455“With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “application/pdfengScience and Information OrganizationGBRinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"Machine learning; adaptability; students; online education; prediction; model"1.02.00 -- Informática y Ciencias de la Información“Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationTEXTPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.txtPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.txtExtracted texttext/plain47283https://dspace-uwiener.metabuscador.org/bitstreams/a765ff83-fa7c-4f52-9dba-abeb61a2d178/downloadffcbb8229a2d741a7794d8b1395727b2MD53THUMBNAILPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.jpgPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdf.jpgGenerated Thumbnailimage/jpeg14051https://dspace-uwiener.metabuscador.org/bitstreams/695370bf-f46d-4aab-bc16-b7b267803945/download45a32df4acc7d471f03268af83c4637aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/12fec7e6-c23b-4c9c-8b82-e6a680d039a4/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdfPaper_55-Comparison_of_Predictive_Machine_Learning_Models.pdfapplication/pdf909923https://dspace-uwiener.metabuscador.org/bitstreams/32880cce-b08e-4ea5-bd72-8fbd8871e506/downloadb19ebff3f643b3c6babad70caece3b34MD5120.500.13053/9419oai:dspace-uwiener.metabuscador.org:20.500.13053/94192024-12-13 14:16:39.872https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).