“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“
Descripción del Articulo
“Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada Norbert Wiener |
Repositorio: | UWIENER-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uwiener.edu.pe:20.500.13053/8626 |
Enlace del recurso: | https://hdl.handle.net/20.500.13053/8626 https://doi.org/10.3390/vaccines11020312 |
Nivel de acceso: | acceso abierto |
Materia: | monkeypox; sentiment; tweets; CNN; LSTM 3.00.00 -- Ciencias médicas, Ciencias de la salud |
id |
UWIE_ce36f5e9bb05c2cc353ed07fa9939b3b |
---|---|
oai_identifier_str |
oai:repositorio.uwiener.edu.pe:20.500.13053/8626 |
network_acronym_str |
UWIE |
network_name_str |
UWIENER-Institucional |
repository_id_str |
9398 |
dc.title.es_PE.fl_str_mv |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
title |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
spellingShingle |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ Iparraguirre-Villanueva, Orlando monkeypox; sentiment; tweets; CNN; LSTM 3.00.00 -- Ciencias médicas, Ciencias de la salud |
title_short |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
title_full |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
title_fullStr |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
title_full_unstemmed |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
title_sort |
“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“ |
author |
Iparraguirre-Villanueva, Orlando |
author_facet |
Iparraguirre-Villanueva, Orlando Alvarez-Risco, Aldo Herrera Salazar, Jose Luis Beltozar-Clemente, Saul Zapata-Paulini, Joselyn Yáñez, Jaime A. Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Alvarez-Risco, Aldo Herrera Salazar, Jose Luis Beltozar-Clemente, Saul Zapata-Paulini, Joselyn Yáñez, Jaime A. Cabanillas-Carbonell, Michael |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Alvarez-Risco, Aldo Herrera Salazar, Jose Luis Beltozar-Clemente, Saul Zapata-Paulini, Joselyn Yáñez, Jaime A. Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
monkeypox; sentiment; tweets; CNN; LSTM |
topic |
monkeypox; sentiment; tweets; CNN; LSTM 3.00.00 -- Ciencias médicas, Ciencias de la salud |
dc.subject.ocde.es_PE.fl_str_mv |
3.00.00 -- Ciencias médicas, Ciencias de la salud |
description |
“Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the positive, negative, and neutral feelings of people who publish their opinions on Twitter with the hashtag #Monkeypox. To find out what people think about this disease, a hybrid-based model architecture built on CNN and LSTM was used to determine the prediction accuracy. The prediction result obtained from the total monkeypox data was 83% accurate. Other performance metrics were also used to evaluate the model, such as specificity, recall level, and F1 score, representing 99%, 85%, and 88%, respectively. The results also showed the polarity of feelings through the CNN-LSTM confusion matrix, where 45.42% of people expressed neither positive nor negative opinions, while 19.45% expressed negative and fearful feelings about this infectious disease. The results of this work contribute to raising public awareness about the monkeypox virus. “ |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-26T17:05:16Z |
dc.date.available.none.fl_str_mv |
2023-05-26T17:05:16Z |
dc.date.issued.fl_str_mv |
2023-01-31 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13053/8626 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/vaccines11020312 |
url |
https://hdl.handle.net/20.500.13053/8626 https://doi.org/10.3390/vaccines11020312 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
UK |
dc.source.none.fl_str_mv |
reponame:UWIENER-Institucional instname:Universidad Privada Norbert Wiener instacron:UWIENER |
instname_str |
Universidad Privada Norbert Wiener |
instacron_str |
UWIENER |
institution |
UWIENER |
reponame_str |
UWIENER-Institucional |
collection |
UWIENER-Institucional |
bitstream.url.fl_str_mv |
https://dspace-uwiener.metabuscador.org/bitstreams/8d0fb4fc-ab13-4db8-9172-78844d3b29c7/download https://dspace-uwiener.metabuscador.org/bitstreams/51793e3c-06c6-40d3-89f2-c2f14bffe8a9/download https://dspace-uwiener.metabuscador.org/bitstreams/954a41a7-345a-495f-9d8a-1d843386cb98/download https://dspace-uwiener.metabuscador.org/bitstreams/b15aa700-0e60-4102-ba96-85bcdeb73064/download |
bitstream.checksum.fl_str_mv |
b6c83fdf0e2b1f544dfbacb555095c02 11ba0f7c4c02f0b67648bfcf89e2fe97 79e7491fab347ba4a1a22dbac1658c88 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Wiener |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1835828657467162624 |
spelling |
Iparraguirre-Villanueva, OrlandoAlvarez-Risco, AldoHerrera Salazar, Jose LuisBeltozar-Clemente, SaulZapata-Paulini, JoselynYáñez, Jaime A.Cabanillas-Carbonell, Michael2023-05-26T17:05:16Z2023-05-26T17:05:16Z2023-01-31https://hdl.handle.net/20.500.13053/8626https://doi.org/10.3390/vaccines11020312“Monkeypox is a rare disease caused by the monkeypox virus. This disease was considered eradicated in 1980 and was believed to affect rodents and not humans. However, recent years have seen a massive outbreak of monkeypox in humans, setting off worldwide alerts from health agencies. As of September 2022, the number of confirmed cases in Peru had reached 1964. Although most monkeypox patients have been discharged, we cannot neglect the monitoring of the population with respect to the monkeypox virus. Lately, the population has started to express their feelings and opinions through social media, specifically Twitter, as it is the most used social medium and is an ideal space to gather what people think about the monkeypox virus. The information imparted through this medium can be in different formats, such as text, videos, images, audio, etc. The objective of this work is to analyze the positive, negative, and neutral feelings of people who publish their opinions on Twitter with the hashtag #Monkeypox. To find out what people think about this disease, a hybrid-based model architecture built on CNN and LSTM was used to determine the prediction accuracy. The prediction result obtained from the total monkeypox data was 83% accurate. Other performance metrics were also used to evaluate the model, such as specificity, recall level, and F1 score, representing 99%, 85%, and 88%, respectively. The results also showed the polarity of feelings through the CNN-LSTM confusion matrix, where 45.42% of people expressed neither positive nor negative opinions, while 19.45% expressed negative and fearful feelings about this infectious disease. The results of this work contribute to raising public awareness about the monkeypox virus. “application/pdfengMDPIUKinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/monkeypox; sentiment; tweets; CNN; LSTM3.00.00 -- Ciencias médicas, Ciencias de la salud“The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model“info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationTEXTvaccines-11-00312.pdf.txtvaccines-11-00312.pdf.txtExtracted texttext/plain52357https://dspace-uwiener.metabuscador.org/bitstreams/8d0fb4fc-ab13-4db8-9172-78844d3b29c7/downloadb6c83fdf0e2b1f544dfbacb555095c02MD53THUMBNAILvaccines-11-00312.pdf.jpgvaccines-11-00312.pdf.jpgGenerated Thumbnailimage/jpeg12373https://dspace-uwiener.metabuscador.org/bitstreams/51793e3c-06c6-40d3-89f2-c2f14bffe8a9/download11ba0f7c4c02f0b67648bfcf89e2fe97MD54ORIGINALvaccines-11-00312.pdfvaccines-11-00312.pdfapplication/pdf2060192https://dspace-uwiener.metabuscador.org/bitstreams/954a41a7-345a-495f-9d8a-1d843386cb98/download79e7491fab347ba4a1a22dbac1658c88MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/b15aa700-0e60-4102-ba96-85bcdeb73064/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.13053/8626oai:dspace-uwiener.metabuscador.org:20.500.13053/86262024-12-13 14:23:33.086https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).