Predicting academic performance using automatic learning techniques: A review of the scientific literature

Descripción del Articulo

El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Detalles Bibliográficos
Autores: Molina-Astorayme, Jacob, Cabanillas-Carbonell, Michael
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/26929
Enlace del recurso:https://hdl.handle.net/11537/26929
https://doi.org/10.1109/EIRCON51178.2020.9254065
Nivel de acceso:acceso abierto
Materia:Rendimiento académico
Inteligencia artificial
Enseñanza con ayuda de computadoras
Educación superior
https://purl.org/pe-repo/ocde/ford#2.02.04
id UUPN_f0cd80088e212eae19af2e5861e8df51
oai_identifier_str oai:repositorio.upn.edu.pe:11537/26929
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Predicting academic performance using automatic learning techniques: A review of the scientific literature
title Predicting academic performance using automatic learning techniques: A review of the scientific literature
spellingShingle Predicting academic performance using automatic learning techniques: A review of the scientific literature
Molina-Astorayme, Jacob
Rendimiento académico
Inteligencia artificial
Enseñanza con ayuda de computadoras
Educación superior
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Predicting academic performance using automatic learning techniques: A review of the scientific literature
title_full Predicting academic performance using automatic learning techniques: A review of the scientific literature
title_fullStr Predicting academic performance using automatic learning techniques: A review of the scientific literature
title_full_unstemmed Predicting academic performance using automatic learning techniques: A review of the scientific literature
title_sort Predicting academic performance using automatic learning techniques: A review of the scientific literature
author Molina-Astorayme, Jacob
author_facet Molina-Astorayme, Jacob
Cabanillas-Carbonell, Michael
author_role author
author2 Cabanillas-Carbonell, Michael
author2_role author
dc.contributor.author.fl_str_mv Molina-Astorayme, Jacob
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Rendimiento académico
Inteligencia artificial
Enseñanza con ayuda de computadoras
Educación superior
topic Rendimiento académico
Inteligencia artificial
Enseñanza con ayuda de computadoras
Educación superior
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-22T22:31:01Z
dc.date.available.none.fl_str_mv 2021-06-22T22:31:01Z
dc.date.issued.fl_str_mv 2020-11-17
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Molina, J. & Cabanillas, M. (2020). Predicting academic performance using automatic learning techniques: A review of the scientific literature. Engineering International Research Conference (EIRCON), 1-4. https://doi.org/10.1109/EIRCON51178.2020.9254065
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/26929
dc.identifier.journal.es_PE.fl_str_mv Engineering International Research Conference (EIRCON)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EIRCON51178.2020.9254065
identifier_str_mv Molina, J. & Cabanillas, M. (2020). Predicting academic performance using automatic learning techniques: A review of the scientific literature. Engineering International Research Conference (EIRCON), 1-4. https://doi.org/10.1109/EIRCON51178.2020.9254065
Engineering International Research Conference (EIRCON)
url https://hdl.handle.net/11537/26929
https://doi.org/10.1109/EIRCON51178.2020.9254065
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv IEEE
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/26929/1/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/26929/2/license.txt
bitstream.checksum.fl_str_mv 80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944236692504576
spelling Molina-Astorayme, JacobCabanillas-Carbonell, Michael2021-06-22T22:31:01Z2021-06-22T22:31:01Z2020-11-17Molina, J. & Cabanillas, M. (2020). Predicting academic performance using automatic learning techniques: A review of the scientific literature. Engineering International Research Conference (EIRCON), 1-4. https://doi.org/10.1109/EIRCON51178.2020.9254065https://hdl.handle.net/11537/26929Engineering International Research Conference (EIRCON)https://doi.org/10.1109/EIRCON51178.2020.9254065El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.ABSTRACT Considering the problems and challenges faced by educational institutions in analyzing student performance and improving their educational management, the various automatic learning techniques were examined, which will allow them to generate accurate predictions through the data collected from their students. The present research is a systematic review of literature based on the articles published in IEEE Xplore, Scopus, Science Direct and Scielo where 80 articles were found that according to our inclusion and exclusion criteria were systematized 47. We observed the various techniques used for automatic learning to develop predictive models based on academic performance, we can determine that the most used techniques were the classification. In this way, automatic learning techniques will allow educational institutions to publicize the academic performance of their students in order to improve the educational quality they offer.Revisión por paresLos Olivosapplication/pdfengIEEEPEinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNRendimiento académicoInteligencia artificialEnseñanza con ayuda de computadorasEducación superiorhttps://purl.org/pe-repo/ocde/ford#2.02.04Predicting academic performance using automatic learning techniques: A review of the scientific literatureinfo:eu-repo/semantics/conferenceObjectCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26929/1/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26929/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211537/26929oai:repositorio.upn.edu.pe:11537/269292021-06-22 17:31:06.722Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.932908
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).