Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Autores: | , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2020 |
Institución: | Universidad Privada del Norte |
Repositorio: | UPN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upn.edu.pe:11537/26913 |
Enlace del recurso: | https://hdl.handle.net/11537/26913 https://doi.org/10.1109/EIRCON51178.2020.9253756 |
Nivel de acceso: | acceso abierto |
Materia: | Jugos de fruta Ingeniería de la producción Industria alimentaria https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
UUPN_7179efb13079d0e32b8b1a7e91d5cd8e |
---|---|
oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/26913 |
network_acronym_str |
UUPN |
network_name_str |
UPN-Institucional |
repository_id_str |
1873 |
dc.title.es_PE.fl_str_mv |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
title |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
spellingShingle |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy Chuquizuta Trigoso, Tony Jugos de fruta Ingeniería de la producción Industria alimentaria https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
title_full |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
title_fullStr |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
title_full_unstemmed |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
title_sort |
Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy |
author |
Chuquizuta Trigoso, Tony |
author_facet |
Chuquizuta Trigoso, Tony Oblitas Cruz, Jimy Arteaga Miñano, Hubert Castro Silupu, Wilson |
author_role |
author |
author2 |
Oblitas Cruz, Jimy Arteaga Miñano, Hubert Castro Silupu, Wilson |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Chuquizuta Trigoso, Tony Oblitas Cruz, Jimy Arteaga Miñano, Hubert Castro Silupu, Wilson |
dc.subject.es_PE.fl_str_mv |
Jugos de fruta Ingeniería de la producción Industria alimentaria |
topic |
Jugos de fruta Ingeniería de la producción Industria alimentaria https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-06-21T17:18:57Z |
dc.date.available.none.fl_str_mv |
2021-06-21T17:18:57Z |
dc.date.issued.fl_str_mv |
2020-11-17 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Chuquizuta, T. ...[et al]. (2020). Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy. IEEE Engineering International Research Conference (EIRCON), 1-4. https://doi.org/10.1109/EIRCON51178.2020.9253756 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/26913 |
dc.identifier.journal.es_PE.fl_str_mv |
IEEE Engineering International Research Conference (EIRCON) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EIRCON51178.2020.9253756 |
identifier_str_mv |
Chuquizuta, T. ...[et al]. (2020). Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy. IEEE Engineering International Research Conference (EIRCON), 1-4. https://doi.org/10.1109/EIRCON51178.2020.9253756 IEEE Engineering International Research Conference (EIRCON) |
url |
https://hdl.handle.net/11537/26913 https://doi.org/10.1109/EIRCON51178.2020.9253756 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
IEEE |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
instname_str |
Universidad Privada del Norte |
instacron_str |
UPN |
institution |
UPN |
reponame_str |
UPN-Institucional |
collection |
UPN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/26913/1/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/26913/2/license.txt |
bitstream.checksum.fl_str_mv |
80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPN |
repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
_version_ |
1752944127553568768 |
spelling |
Chuquizuta Trigoso, TonyOblitas Cruz, JimyArteaga Miñano, HubertCastro Silupu, Wilson2021-06-21T17:18:57Z2021-06-21T17:18:57Z2020-11-17Chuquizuta, T. ...[et al]. (2020). Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopy. IEEE Engineering International Research Conference (EIRCON), 1-4. https://doi.org/10.1109/EIRCON51178.2020.9253756https://hdl.handle.net/11537/26913IEEE Engineering International Research Conference (EIRCON)https://doi.org/10.1109/EIRCON51178.2020.9253756El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.ABSTRACT Nowadays, process control in the juice industry requires fast, safe and easily applicable methods. In this regard, the use of dielectric spectroscopy is being coupled to statistical methods such as machine learning in order to develop new methods to identify adulteration. However, there is a small number of scientific reports above the application of the aforementioned methods when citric fruit juices is being identified. Therefore, the objective of this research was to evaluate dielectric spectroscopy and four different classification techniques (Support Vector Machine - SVM, K-nearest neighbor-KNN, Linear Discriminat -LD and Quadratic Discriminat-QD) to discriminate between three citrus juices. For this purpose, samples of Citrus limetta, Citrus limettioides and Citrus reticulata were evaluated; obtaining its dielectric spectral profiles in the range of 5 to 9 GHz. Then from the spectral profiles the loss factor (e”) was calculated using the reflection coefficient. Next e” value was pretreated, reducing noise through a savitzky golay filter, and new variables created through Principal Component Analysis (PCA). Finally, the models for classification were constructed with the previously mentioned techniques and the principal components. The results shown that using four components the variance can be explained in 97%; likewise, the discrimination values vary between 88.9 and 100.0%, with SVM, LD and QD the best discrimination techniques all successfully at 100.0 %. Therefore; It is concluded that the technique of dielectric spectroscopy and machine learning presents potential for the discrimination of citrus fruit juices.Cajamarcaapplication/pdfengIEEEPEinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNJugos de frutaIngeniería de la producciónIndustria alimentariahttps://purl.org/pe-repo/ocde/ford#2.11.04Application of machine Learning in the discrimination of citrus fruit juices: uses of dielectric spectroscopyinfo:eu-repo/semantics/conferenceObjectCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/26913/1/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/26913/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5211537/26913oai:repositorio.upn.edu.pe:11537/269132021-06-21 12:19:02.439Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.888049 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).