Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis

Descripción del Articulo

Aims: Differentiation between patients with Takotsubo syndrome and acute coronary syndrome (ACS) remains a challenge. We performed a systematic review to identify and evaluate diagnostic predictive models to distinguish both conditions. Methods and results: We performed an electronic search in PubMe...

Descripción completa

Detalles Bibliográficos
Autores: Diaz-Arocutipa, Carlos, Hernandez, Adrian V., Benites-Moya, Cesar Joel, Gamarra-Valverde, Norma Nicole, Yrivarren-Cespedes, Rafael, Torres-Valencia, Javier, Vicent, Lourdes
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/684192
Enlace del recurso:http://hdl.handle.net/10757/684192
Nivel de acceso:acceso embargado
Materia:Acute coronary syndrome
Diagnostic model
Systematic review
Takotsubo syndrome
id UUPC_e6c94c091f33de26a6cf0070959fc9d1
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/684192
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
title Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
spellingShingle Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
Diaz-Arocutipa, Carlos
Acute coronary syndrome
Diagnostic model
Systematic review
Takotsubo syndrome
title_short Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
title_full Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
title_fullStr Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
title_full_unstemmed Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
title_sort Diagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysis
author Diaz-Arocutipa, Carlos
author_facet Diaz-Arocutipa, Carlos
Hernandez, Adrian V.
Benites-Moya, Cesar Joel
Gamarra-Valverde, Norma Nicole
Yrivarren-Cespedes, Rafael
Torres-Valencia, Javier
Vicent, Lourdes
author_role author
author2 Hernandez, Adrian V.
Benites-Moya, Cesar Joel
Gamarra-Valverde, Norma Nicole
Yrivarren-Cespedes, Rafael
Torres-Valencia, Javier
Vicent, Lourdes
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Diaz-Arocutipa, Carlos
Hernandez, Adrian V.
Benites-Moya, Cesar Joel
Gamarra-Valverde, Norma Nicole
Yrivarren-Cespedes, Rafael
Torres-Valencia, Javier
Vicent, Lourdes
dc.subject.es_PE.fl_str_mv Acute coronary syndrome
Diagnostic model
Systematic review
Takotsubo syndrome
topic Acute coronary syndrome
Diagnostic model
Systematic review
Takotsubo syndrome
description Aims: Differentiation between patients with Takotsubo syndrome and acute coronary syndrome (ACS) remains a challenge. We performed a systematic review to identify and evaluate diagnostic predictive models to distinguish both conditions. Methods and results: We performed an electronic search in PubMed, EMBASE, and Scopus until January 2024. Observational studies that developed and/or validated multivariable diagnostic models to differentiate Takotsubo syndrome from ACS were included. The risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We conducted a narrative synthesis of the performance measures of the diagnostic models evaluated in each study. In addition, a random-effects meta-analysis of the c-statistic with its 95% confidence interval (CI) of the InterTAK model was performed. Of 1015 articles, a total of 11 studies (n = 4552) were included. We identified eight new diagnostic models and eight were external validation of existing models. The most frequent model was InterTAK (n = 4). The reported c-statistic ranged from 0.77 to 0.97 across all models. Calibration plots were reported only for two models. The summary c-statistic was 0.89 (95% confidence interval 0.73–0.96) for the InterTAK model. The risk of bias was high for all models and the applicability was of low (50%) or unclear (50%) concern. Conclusion: Our review identified multiple diagnostic models to diagnose Takotsubo syndrome. Although most models showed acceptable-to-good discriminative performance, calibration measures were almost unreported and the risk of bias was a concern in most studies.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-09T20:16:53Z
dc.date.available.none.fl_str_mv 2025-02-09T20:16:53Z
dc.date.issued.fl_str_mv 2025-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 13889842
dc.identifier.doi.none.fl_str_mv 10.1002/ejhf.3584
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/684192
dc.identifier.eissn.none.fl_str_mv 18790844
dc.identifier.journal.es_PE.fl_str_mv European Journal of Heart Failure
dc.identifier.eid.none.fl_str_mv 2-s2.0-85214900128
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85214900128
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
dc.identifier.ror.none.fl_str_mv 047xrr705
identifier_str_mv 13889842
10.1002/ejhf.3584
18790844
European Journal of Heart Failure
2-s2.0-85214900128
SCOPUS_ID:85214900128
0000 0001 2196 144X
047xrr705
url http://hdl.handle.net/10757/684192
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv John Wiley and Sons Ltd
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv European Journal of Heart Failure
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/684192/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066142269931520
spelling e47e0608ec1906ef029e91a5e82b2676500cc55c7c82f701158586b8e3771c56d81477f045723b3b86ff97a13a7bcef187e300c839f0100260a56899d018c69c372db1300074d4c7180babb400fa4f9be42f65de73007991624d238fca92d8c0861b15abf06d300ced9b7ca17be6d92a4270e12df56c52a300Diaz-Arocutipa, CarlosHernandez, Adrian V.Benites-Moya, Cesar JoelGamarra-Valverde, Norma NicoleYrivarren-Cespedes, RafaelTorres-Valencia, JavierVicent, Lourdes2025-02-09T20:16:53Z2025-02-09T20:16:53Z2025-01-011388984210.1002/ejhf.3584http://hdl.handle.net/10757/68419218790844European Journal of Heart Failure2-s2.0-85214900128SCOPUS_ID:852149001280000 0001 2196 144X047xrr705Aims: Differentiation between patients with Takotsubo syndrome and acute coronary syndrome (ACS) remains a challenge. We performed a systematic review to identify and evaluate diagnostic predictive models to distinguish both conditions. Methods and results: We performed an electronic search in PubMed, EMBASE, and Scopus until January 2024. Observational studies that developed and/or validated multivariable diagnostic models to differentiate Takotsubo syndrome from ACS were included. The risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We conducted a narrative synthesis of the performance measures of the diagnostic models evaluated in each study. In addition, a random-effects meta-analysis of the c-statistic with its 95% confidence interval (CI) of the InterTAK model was performed. Of 1015 articles, a total of 11 studies (n = 4552) were included. We identified eight new diagnostic models and eight were external validation of existing models. The most frequent model was InterTAK (n = 4). The reported c-statistic ranged from 0.77 to 0.97 across all models. Calibration plots were reported only for two models. The summary c-statistic was 0.89 (95% confidence interval 0.73–0.96) for the InterTAK model. The risk of bias was high for all models and the applicability was of low (50%) or unclear (50%) concern. Conclusion: Our review identified multiple diagnostic models to diagnose Takotsubo syndrome. Although most models showed acceptable-to-good discriminative performance, calibration measures were almost unreported and the risk of bias was a concern in most studies.Revisión por paresODS 3: Salud y bienestarODS 9: Industria, innovación e infraestructuraODS 17: Alianzas para lograr los objetivosapplication/htmlengJohn Wiley and Sons Ltdinfo:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCEuropean Journal of Heart Failurereponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAcute coronary syndromeDiagnostic modelSystematic reviewTakotsubo syndromeDiagnostic models to differentiate Takotsubo syndrome from acute coronary syndrome: A systematic review and meta-analysisinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684192/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/684192oai:repositorioacademico.upc.edu.pe:10757/6841922025-03-20 21:22:04.274Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).