CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning

Descripción del Articulo

The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify...

Descripción completa

Detalles Bibliográficos
Autores: Sánchez, Diego, Silva, John, Salas, Cesar
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676051
Enlace del recurso:http://hdl.handle.net/10757/676051
Nivel de acceso:acceso embargado
Materia:Deep Learning
Mobile Application
Optical Character Recognition (OCR)
vehicle license plate cloning
vehicle license plate fraud
Descripción
Sumario:The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify the license plate and its alphanumeric code, obtain detailed information about the vehicle and its owner, and issue reports to the authorities in case of cloned plate or stolen. The objective of the project is to speed up identification, consultation, and issuance of reports regarding vehicular identity theft, thus contributing to improving citizen security missing results. The analyzed results indicate that 75% of the experts expressed favorable opinions regarding the validation of the proposed architecture diagram for CLPSafe. The positive evaluations received endorse the feasibility and effectiveness of the proposed architecture, affirming its potential to effectively tackle the problem of license plate cloning in Peru.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).