CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
Descripción del Articulo
The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676051 |
| Enlace del recurso: | http://hdl.handle.net/10757/676051 |
| Nivel de acceso: | acceso embargado |
| Materia: | Deep Learning Mobile Application Optical Character Recognition (OCR) vehicle license plate cloning vehicle license plate fraud https://purl.org/pe-repo/ocde/ford#3.00.00 |
| id |
UUPC_c9c6d79005ef656afa2730410168b318 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676051 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| title |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| spellingShingle |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning Sánchez, Diego Deep Learning Mobile Application Optical Character Recognition (OCR) vehicle license plate cloning vehicle license plate fraud https://purl.org/pe-repo/ocde/ford#3.00.00 |
| title_short |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| title_full |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| title_fullStr |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| title_full_unstemmed |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| title_sort |
CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning |
| author |
Sánchez, Diego |
| author_facet |
Sánchez, Diego Silva, John Salas, Cesar |
| author_role |
author |
| author2 |
Silva, John Salas, Cesar |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Sánchez, Diego Silva, John Salas, Cesar |
| dc.subject.es_PE.fl_str_mv |
Deep Learning Mobile Application Optical Character Recognition (OCR) vehicle license plate cloning vehicle license plate fraud |
| topic |
Deep Learning Mobile Application Optical Character Recognition (OCR) vehicle license plate cloning vehicle license plate fraud https://purl.org/pe-repo/ocde/ford#3.00.00 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.00.00 |
| description |
The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify the license plate and its alphanumeric code, obtain detailed information about the vehicle and its owner, and issue reports to the authorities in case of cloned plate or stolen. The objective of the project is to speed up identification, consultation, and issuance of reports regarding vehicular identity theft, thus contributing to improving citizen security missing results. The analyzed results indicate that 75% of the experts expressed favorable opinions regarding the validation of the proposed architecture diagram for CLPSafe. The positive evaluations received endorse the feasibility and effectiveness of the proposed architecture, affirming its potential to effectively tackle the problem of license plate cloning in Peru. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-07T11:31:15Z |
| dc.date.available.none.fl_str_mv |
2024-10-07T11:31:15Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
18650929 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-63616-5_12 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676051 |
| dc.identifier.eissn.none.fl_str_mv |
18650937 |
| dc.identifier.journal.es_PE.fl_str_mv |
Communications in Computer and Information Science |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85199625347 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85199625347 |
| identifier_str_mv |
18650929 10.1007/978-3-031-63616-5_12 18650937 Communications in Computer and Information Science 2-s2.0-85199625347 SCOPUS_ID:85199625347 |
| url |
http://hdl.handle.net/10757/676051 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Communications in Computer and Information Science |
| dc.source.volume.none.fl_str_mv |
2142 CCIS |
| dc.source.beginpage.none.fl_str_mv |
157 |
| dc.source.endpage.none.fl_str_mv |
166 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676051/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Académico UPC |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1851775678200938496 |
| spelling |
cd39876ea3f62999100fabbe3d82084ca9d4b68f0177074a1c6cb388785663d13001c3f6fda80e51ecb555a6cf77289e1feSánchez, DiegoSilva, JohnSalas, Cesar2024-10-07T11:31:15Z2024-10-07T11:31:15Z2024-01-011865092910.1007/978-3-031-63616-5_12http://hdl.handle.net/10757/67605118650937Communications in Computer and Information Science2-s2.0-85199625347SCOPUS_ID:85199625347The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify the license plate and its alphanumeric code, obtain detailed information about the vehicle and its owner, and issue reports to the authorities in case of cloned plate or stolen. The objective of the project is to speed up identification, consultation, and issuance of reports regarding vehicular identity theft, thus contributing to improving citizen security missing results. The analyzed results indicate that 75% of the experts expressed favorable opinions regarding the validation of the proposed architecture diagram for CLPSafe. The positive evaluations received endorse the feasibility and effectiveness of the proposed architecture, affirming its potential to effectively tackle the problem of license plate cloning in Peru.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessDeep LearningMobile ApplicationOptical Character Recognition (OCR)vehicle license plate cloningvehicle license plate fraudhttps://purl.org/pe-repo/ocde/ford#3.00.00CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learninginfo:eu-repo/semantics/articleCommunications in Computer and Information Science2142 CCIS157166reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676051/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676051oai:repositorioacademico.upc.edu.pe:10757/6760512025-10-30 07:28:16.573Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.446179 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).