CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning

Descripción del Articulo

The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify...

Descripción completa

Detalles Bibliográficos
Autores: Sánchez, Diego, Silva, John, Salas, Cesar
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676051
Enlace del recurso:http://hdl.handle.net/10757/676051
Nivel de acceso:acceso embargado
Materia:Deep Learning
Mobile Application
Optical Character Recognition (OCR)
vehicle license plate cloning
vehicle license plate fraud
https://purl.org/pe-repo/ocde/ford#3.00.00
id UUPC_c9c6d79005ef656afa2730410168b318
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676051
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
title CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
spellingShingle CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
Sánchez, Diego
Deep Learning
Mobile Application
Optical Character Recognition (OCR)
vehicle license plate cloning
vehicle license plate fraud
https://purl.org/pe-repo/ocde/ford#3.00.00
title_short CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
title_full CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
title_fullStr CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
title_full_unstemmed CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
title_sort CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learning
author Sánchez, Diego
author_facet Sánchez, Diego
Silva, John
Salas, Cesar
author_role author
author2 Silva, John
Salas, Cesar
author2_role author
author
dc.contributor.author.fl_str_mv Sánchez, Diego
Silva, John
Salas, Cesar
dc.subject.es_PE.fl_str_mv Deep Learning
Mobile Application
Optical Character Recognition (OCR)
vehicle license plate cloning
vehicle license plate fraud
topic Deep Learning
Mobile Application
Optical Character Recognition (OCR)
vehicle license plate cloning
vehicle license plate fraud
https://purl.org/pe-repo/ocde/ford#3.00.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.00.00
description The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify the license plate and its alphanumeric code, obtain detailed information about the vehicle and its owner, and issue reports to the authorities in case of cloned plate or stolen. The objective of the project is to speed up identification, consultation, and issuance of reports regarding vehicular identity theft, thus contributing to improving citizen security missing results. The analyzed results indicate that 75% of the experts expressed favorable opinions regarding the validation of the proposed architecture diagram for CLPSafe. The positive evaluations received endorse the feasibility and effectiveness of the proposed architecture, affirming its potential to effectively tackle the problem of license plate cloning in Peru.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-07T11:31:15Z
dc.date.available.none.fl_str_mv 2024-10-07T11:31:15Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-63616-5_12
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676051
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85199625347
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85199625347
identifier_str_mv 18650929
10.1007/978-3-031-63616-5_12
18650937
Communications in Computer and Information Science
2-s2.0-85199625347
SCOPUS_ID:85199625347
url http://hdl.handle.net/10757/676051
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 2142 CCIS
dc.source.beginpage.none.fl_str_mv 157
dc.source.endpage.none.fl_str_mv 166
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676051/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Académico UPC
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1851775678200938496
spelling cd39876ea3f62999100fabbe3d82084ca9d4b68f0177074a1c6cb388785663d13001c3f6fda80e51ecb555a6cf77289e1feSánchez, DiegoSilva, JohnSalas, Cesar2024-10-07T11:31:15Z2024-10-07T11:31:15Z2024-01-011865092910.1007/978-3-031-63616-5_12http://hdl.handle.net/10757/67605118650937Communications in Computer and Information Science2-s2.0-85199625347SCOPUS_ID:85199625347The problem of cloning vehicle license plates in Peru is detailed, by criminals to sell vehicles at a lower price or commit crimes with the stolen vehicle. A mobile application is proposed that uses convolutional neural networks and deeplearning algorithms: TensorFlow, EasyOCR and OpenCV to identify the license plate and its alphanumeric code, obtain detailed information about the vehicle and its owner, and issue reports to the authorities in case of cloned plate or stolen. The objective of the project is to speed up identification, consultation, and issuance of reports regarding vehicular identity theft, thus contributing to improving citizen security missing results. The analyzed results indicate that 75% of the experts expressed favorable opinions regarding the validation of the proposed architecture diagram for CLPSafe. The positive evaluations received endorse the feasibility and effectiveness of the proposed architecture, affirming its potential to effectively tackle the problem of license plate cloning in Peru.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessDeep LearningMobile ApplicationOptical Character Recognition (OCR)vehicle license plate cloningvehicle license plate fraudhttps://purl.org/pe-repo/ocde/ford#3.00.00CLPSafe: Mobile Application for Avoid Cloned of License Plates Using Deep Learninginfo:eu-repo/semantics/articleCommunications in Computer and Information Science2142 CCIS157166reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676051/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676051oai:repositorioacademico.upc.edu.pe:10757/6760512025-10-30 07:28:16.573Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.446179
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).