Time Series Decomposition using Automatic Learning Techniques for Predictive Models
Descripción del Articulo
This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series....
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/652144 |
Enlace del recurso: | http://hdl.handle.net/10757/652144 |
Nivel de acceso: | acceso abierto |
Materia: | Time series Agricultural sector Automatic-learning Decomposition methods Predictive modeling Predictive models Predictive performance Production prediction Time series decomposition Learning systems |
id |
UUPC_ae05bf3642be2fd4b5330f501e7582d5 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/652144 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.en_US.fl_str_mv |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
title |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
spellingShingle |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models Silva, Jesús Time series Agricultural sector Automatic-learning Decomposition methods Predictive modeling Predictive models Predictive performance Production prediction Time series decomposition Learning systems |
title_short |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
title_full |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
title_fullStr |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
title_full_unstemmed |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
title_sort |
Time Series Decomposition using Automatic Learning Techniques for Predictive Models |
author |
Silva, Jesús |
author_facet |
Silva, Jesús Hernández Palma, Hugo Niebles Núẽz, William Ovallos-Gazabon, David Varela, Noel |
author_role |
author |
author2 |
Hernández Palma, Hugo Niebles Núẽz, William Ovallos-Gazabon, David Varela, Noel |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Silva, Jesús Hernández Palma, Hugo Niebles Núẽz, William Ovallos-Gazabon, David Varela, Noel |
dc.subject.en_US.fl_str_mv |
Time series Agricultural sector Automatic-learning Decomposition methods Predictive modeling Predictive models Predictive performance Production prediction Time series decomposition Learning systems |
topic |
Time series Agricultural sector Automatic-learning Decomposition methods Predictive modeling Predictive models Predictive performance Production prediction Time series decomposition Learning systems |
description |
This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-02T17:08:29Z |
dc.date.available.none.fl_str_mv |
2020-07-02T17:08:29Z |
dc.date.issued.fl_str_mv |
2020-01-07 |
dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1432/1/012096 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/652144 |
dc.identifier.eissn.none.fl_str_mv |
17426596 |
dc.identifier.journal.en_US.fl_str_mv |
Journal of Physics: Conference Series |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85079090943 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85079090943 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
17426588 10.1088/1742-6596/1432/1/012096 17426596 Journal of Physics: Conference Series 2-s2.0-85079090943 SCOPUS_ID:85079090943 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/652144 |
dc.language.iso.en_US.fl_str_mv |
eng |
language |
eng |
dc.relation.url.en_US.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012096 |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.en_US.fl_str_mv |
application/pdf |
dc.publisher.en_US.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Journal of Physics: Conference Series |
dc.source.volume.none.fl_str_mv |
1432 |
dc.source.issue.none.fl_str_mv |
1 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/5/10.10881742-659614321012096.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/4/10.10881742-659614321012096.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/1/10.10881742-659614321012096.pdf |
bitstream.checksum.fl_str_mv |
4dc8a52d9fd2414d50d26bcd5225be90 07a690d8f765264ba65001342bf21014 8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 a243bc6ba7386a832d47ba0e7b18b6c5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837188243386269696 |
spelling |
4dc0aefbea6d494fa03e7acf0e5b069950070c0843e406fa4d4e04ee178a790e187500b547fd60ecb3cb34e467d8346b3bdb0450070ec5b767fcd9025e2f3715fe62bd5875001b0084486128023a07da0236300a503b500Silva, JesúsHernández Palma, HugoNiebles Núẽz, WilliamOvallos-Gazabon, DavidVarela, Noel2020-07-02T17:08:29Z2020-07-02T17:08:29Z2020-01-071742658810.1088/1742-6596/1432/1/012096http://hdl.handle.net/10757/65214417426596Journal of Physics: Conference Series2-s2.0-85079090943SCOPUS_ID:850790909430000 0001 2196 144XThis paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition.application/pdfengInstitute of Physics Publishinghttps://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012096info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Time seriesAgricultural sectorAutomatic-learningDecomposition methodsPredictive modelingPredictive modelsPredictive performanceProduction predictionTime series decompositionLearning systemsTime Series Decomposition using Automatic Learning Techniques for Predictive Modelsinfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-07-02T17:08:36ZTHUMBNAIL10.10881742-659614321012096.pdf.jpg10.10881742-659614321012096.pdf.jpgGenerated Thumbnailimage/jpeg55894https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/5/10.10881742-659614321012096.pdf.jpg4dc8a52d9fd2414d50d26bcd5225be90MD55falseTEXT10.10881742-659614321012096.pdf.txt10.10881742-659614321012096.pdf.txtExtracted texttext/plain23613https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/4/10.10881742-659614321012096.pdf.txt07a690d8f765264ba65001342bf21014MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.10881742-659614321012096.pdf10.10881742-659614321012096.pdfapplication/pdf696095https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/1/10.10881742-659614321012096.pdfa243bc6ba7386a832d47ba0e7b18b6c5MD51true10757/652144oai:repositorioacademico.upc.edu.pe:10757/6521442020-07-03 02:02:35.37Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).