Time Series Decomposition using Automatic Learning Techniques for Predictive Models

Descripción del Articulo

This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series....

Descripción completa

Detalles Bibliográficos
Autores: Silva, Jesús, Hernández Palma, Hugo, Niebles Núẽz, William, Ovallos-Gazabon, David, Varela, Noel
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652144
Enlace del recurso:http://hdl.handle.net/10757/652144
Nivel de acceso:acceso abierto
Materia:Time series
Agricultural sector
Automatic-learning
Decomposition methods
Predictive modeling
Predictive models
Predictive performance
Production prediction
Time series decomposition
Learning systems
id UUPC_ae05bf3642be2fd4b5330f501e7582d5
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/652144
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Time Series Decomposition using Automatic Learning Techniques for Predictive Models
title Time Series Decomposition using Automatic Learning Techniques for Predictive Models
spellingShingle Time Series Decomposition using Automatic Learning Techniques for Predictive Models
Silva, Jesús
Time series
Agricultural sector
Automatic-learning
Decomposition methods
Predictive modeling
Predictive models
Predictive performance
Production prediction
Time series decomposition
Learning systems
title_short Time Series Decomposition using Automatic Learning Techniques for Predictive Models
title_full Time Series Decomposition using Automatic Learning Techniques for Predictive Models
title_fullStr Time Series Decomposition using Automatic Learning Techniques for Predictive Models
title_full_unstemmed Time Series Decomposition using Automatic Learning Techniques for Predictive Models
title_sort Time Series Decomposition using Automatic Learning Techniques for Predictive Models
author Silva, Jesús
author_facet Silva, Jesús
Hernández Palma, Hugo
Niebles Núẽz, William
Ovallos-Gazabon, David
Varela, Noel
author_role author
author2 Hernández Palma, Hugo
Niebles Núẽz, William
Ovallos-Gazabon, David
Varela, Noel
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Jesús
Hernández Palma, Hugo
Niebles Núẽz, William
Ovallos-Gazabon, David
Varela, Noel
dc.subject.en_US.fl_str_mv Time series
Agricultural sector
Automatic-learning
Decomposition methods
Predictive modeling
Predictive models
Predictive performance
Production prediction
Time series decomposition
Learning systems
topic Time series
Agricultural sector
Automatic-learning
Decomposition methods
Predictive modeling
Predictive models
Predictive performance
Production prediction
Time series decomposition
Learning systems
description This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-02T17:08:29Z
dc.date.available.none.fl_str_mv 2020-07-02T17:08:29Z
dc.date.issued.fl_str_mv 2020-01-07
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1432/1/012096
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/652144
dc.identifier.eissn.none.fl_str_mv 17426596
dc.identifier.journal.en_US.fl_str_mv Journal of Physics: Conference Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85079090943
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85079090943
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 17426588
10.1088/1742-6596/1432/1/012096
17426596
Journal of Physics: Conference Series
2-s2.0-85079090943
SCOPUS_ID:85079090943
0000 0001 2196 144X
url http://hdl.handle.net/10757/652144
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.url.en_US.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012096
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.en_US.fl_str_mv application/pdf
dc.publisher.en_US.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Physics: Conference Series
dc.source.volume.none.fl_str_mv 1432
dc.source.issue.none.fl_str_mv 1
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/5/10.10881742-659614321012096.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/4/10.10881742-659614321012096.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/1/10.10881742-659614321012096.pdf
bitstream.checksum.fl_str_mv 4dc8a52d9fd2414d50d26bcd5225be90
07a690d8f765264ba65001342bf21014
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
a243bc6ba7386a832d47ba0e7b18b6c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837188243386269696
spelling 4dc0aefbea6d494fa03e7acf0e5b069950070c0843e406fa4d4e04ee178a790e187500b547fd60ecb3cb34e467d8346b3bdb0450070ec5b767fcd9025e2f3715fe62bd5875001b0084486128023a07da0236300a503b500Silva, JesúsHernández Palma, HugoNiebles Núẽz, WilliamOvallos-Gazabon, DavidVarela, Noel2020-07-02T17:08:29Z2020-07-02T17:08:29Z2020-01-071742658810.1088/1742-6596/1432/1/012096http://hdl.handle.net/10757/65214417426596Journal of Physics: Conference Series2-s2.0-85079090943SCOPUS_ID:850790909430000 0001 2196 144XThis paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition.application/pdfengInstitute of Physics Publishinghttps://iopscience.iop.org/article/10.1088/1742-6596/1432/1/012096info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Time seriesAgricultural sectorAutomatic-learningDecomposition methodsPredictive modelingPredictive modelsPredictive performanceProduction predictionTime series decompositionLearning systemsTime Series Decomposition using Automatic Learning Techniques for Predictive Modelsinfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-07-02T17:08:36ZTHUMBNAIL10.10881742-659614321012096.pdf.jpg10.10881742-659614321012096.pdf.jpgGenerated Thumbnailimage/jpeg55894https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/5/10.10881742-659614321012096.pdf.jpg4dc8a52d9fd2414d50d26bcd5225be90MD55falseTEXT10.10881742-659614321012096.pdf.txt10.10881742-659614321012096.pdf.txtExtracted texttext/plain23613https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/4/10.10881742-659614321012096.pdf.txt07a690d8f765264ba65001342bf21014MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL10.10881742-659614321012096.pdf10.10881742-659614321012096.pdfapplication/pdf696095https://repositorioacademico.upc.edu.pe/bitstream/10757/652144/1/10.10881742-659614321012096.pdfa243bc6ba7386a832d47ba0e7b18b6c5MD51true10757/652144oai:repositorioacademico.upc.edu.pe:10757/6521442020-07-03 02:02:35.37Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).