Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers

Descripción del Articulo

In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the inte...

Descripción completa

Detalles Bibliográficos
Autores: Knoke, Tobias, Kinnewig, Sebastian, Beuchler, Sven, Demircan, Ayhan, Morgner, Uwe, Wick, Thomas
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5045
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045
Nivel de acceso:acceso abierto
Materia:Time-Harmonic Maxwell’s Equations
Machine Learning
Feedforward Neural Network
Domain Decomposition Method
Descripción
Sumario:In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).