Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
Descripción del Articulo
In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the inte...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5045 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045 |
Nivel de acceso: | acceso abierto |
Materia: | Time-Harmonic Maxwell’s Equations Machine Learning Feedforward Neural Network Domain Decomposition Method |
id |
REVUNITRU_7d83196a11615425e24955e4781d97f8 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5045 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbersKnoke, TobiasKinnewig, SebastianBeuchler, SvenDemircan, AyhanMorgner, UweWick, ThomasTime-Harmonic Maxwell’s EquationsMachine LearningFeedforward Neural NetworkDomain Decomposition MethodIn this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.National University of Trujillo - Academic Department of Mathematics2023-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 1 - 15Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 1 - 15Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 1 - 152411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045/5448Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/50452023-06-20T21:59:24Z |
dc.title.none.fl_str_mv |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
title |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
spellingShingle |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers Knoke, Tobias Time-Harmonic Maxwell’s Equations Machine Learning Feedforward Neural Network Domain Decomposition Method |
title_short |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
title_full |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
title_fullStr |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
title_full_unstemmed |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
title_sort |
Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers |
dc.creator.none.fl_str_mv |
Knoke, Tobias Kinnewig, Sebastian Beuchler, Sven Demircan, Ayhan Morgner, Uwe Wick, Thomas |
author |
Knoke, Tobias |
author_facet |
Knoke, Tobias Kinnewig, Sebastian Beuchler, Sven Demircan, Ayhan Morgner, Uwe Wick, Thomas |
author_role |
author |
author2 |
Kinnewig, Sebastian Beuchler, Sven Demircan, Ayhan Morgner, Uwe Wick, Thomas |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Time-Harmonic Maxwell’s Equations Machine Learning Feedforward Neural Network Domain Decomposition Method |
topic |
Time-Harmonic Maxwell’s Equations Machine Learning Feedforward Neural Network Domain Decomposition Method |
description |
In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045/5448 |
dc.rights.none.fl_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 1 - 15 Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 1 - 15 Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 1 - 15 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845253424887627776 |
score |
13.243185 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).