Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers

Descripción del Articulo

In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the inte...

Descripción completa

Detalles Bibliográficos
Autores: Knoke, Tobias, Kinnewig, Sebastian, Beuchler, Sven, Demircan, Ayhan, Morgner, Uwe, Wick, Thomas
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5045
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045
Nivel de acceso:acceso abierto
Materia:Time-Harmonic Maxwell’s Equations
Machine Learning
Feedforward Neural Network
Domain Decomposition Method
id REVUNITRU_7d83196a11615425e24955e4781d97f8
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5045
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbersKnoke, TobiasKinnewig, SebastianBeuchler, SvenDemircan, AyhanMorgner, UweWick, ThomasTime-Harmonic Maxwell’s EquationsMachine LearningFeedforward Neural NetworkDomain Decomposition MethodIn this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.National University of Trujillo - Academic Department of Mathematics2023-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 1 - 15Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 1 - 15Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 1 - 152411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045/5448Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/50452023-06-20T21:59:24Z
dc.title.none.fl_str_mv Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
title Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
spellingShingle Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
Knoke, Tobias
Time-Harmonic Maxwell’s Equations
Machine Learning
Feedforward Neural Network
Domain Decomposition Method
title_short Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
title_full Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
title_fullStr Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
title_full_unstemmed Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
title_sort Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers
dc.creator.none.fl_str_mv Knoke, Tobias
Kinnewig, Sebastian
Beuchler, Sven
Demircan, Ayhan
Morgner, Uwe
Wick, Thomas
author Knoke, Tobias
author_facet Knoke, Tobias
Kinnewig, Sebastian
Beuchler, Sven
Demircan, Ayhan
Morgner, Uwe
Wick, Thomas
author_role author
author2 Kinnewig, Sebastian
Beuchler, Sven
Demircan, Ayhan
Morgner, Uwe
Wick, Thomas
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Time-Harmonic Maxwell’s Equations
Machine Learning
Feedforward Neural Network
Domain Decomposition Method
topic Time-Harmonic Maxwell’s Equations
Machine Learning
Feedforward Neural Network
Domain Decomposition Method
description In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5045/5448
dc.rights.none.fl_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 1 - 15
Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 1 - 15
Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 1 - 15
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845253424887627776
score 13.243185
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).